PROGRESS REPORT

FORAGE CROP IN VESTIGATIONS 1962

FORAGE MANAGEMENT

Crop Science Department
Ontario Agricultural College
Guelph

This report contains data on O.A.C. trials. It is not complete in that only the data summarized by April 1, 1962, are included. The report is prepared for use of the members of the Crop Science Department and for those associated with the forage program.

A federal-provincial program is in operation in variety and mixture testing and in orchardgrass breeding. This report contains some of the data collected by the Field Crops Division, Western Ontario Agricultural School, and by the Field Husbandry Division, Kemptville Agricultural School, but does not include data collected by federal stations in the co-ordinated program. The complete data from all stations for the co-ordinated program, are available in the report of the annual meeting of the Forage Crop Sub-committee for Recommendations, November, 1962.
(Year refers to year trial was seeded, and number in brackets is experiment number)
Page
Weather records, 1962 growing season 1
Hay InvestigationsSummary of provincial hay-pasture mixtures for areas ofgood drainage, Series A4
Hay growth curves - description of project 8
Hay growth curve, 1961 (151) - First crop digestiblity data 9
Yield, protein, digestibility relationships -
Vernal alfalfa. 11
DuPuits alfalfa 12
Climax timothy 13
Essex timothy 14
Frode orchard 15
Ottawa 100 orchard 16
Saratoga brome 17
Canada brome 18
Residual effects in 1962 (151) 19
Hay growth curve, 1962 (157)
Alfalfa 23
Timothy 30
Orchardgrass 36
Bromegrass 42
Hay growth curves, per cent digestible dry matter, 1961 and 1962 48
Hay growth curves, per cent crude protein, 1962 49
Mixture diversity trial, 1961 (310) 50
Pasture Investigations
Aftermath distribution of alfalfa and trefoil varieties, 1961 (4783) 53
Dupuits alfalfa 55
Vernal alfalfa 58
Viking trefoil 61
Leo (Morshansk) trefoil 64
Empire trefoil 67
Quality Investigations - Progress Report using the in vitro technique 70
Annual Grass Investigations
I Effect of seeding rates on Westerwolth ryegrass 1962 (228) 80
II Effect of management and cutting height on yield of Westerwolth and Italian ryegrass, 1962 (229) 82
III Yield of seed of three annual grasses, 1962 (230) 85
IV Growth curve study on Italian ryegrass, 1962 (231) 86
Growth curve study on Westerwolth ryegrass 89
V Alternate row seeding of DuPuits alfalfa and Westerwolth ryegrass 92

Page
Seeding Establishment
Oat lodging and forage establishment, 1961 \& 1962 (153, 161)....... 93 Barley variety and establishment, 1962 (163) 96

Rape Investigations
Rate and Method of seeding rape, 1962 (165) 97
Rate of seeding rape (average of 1959, 1961, 1962 crops) 99
Forage crop publications and papers presented, May, 1962April 30, 1963

TEMPERATURE		APRIL	MAY	JUNE	JULY	AUCUST	SEPTEMBER
Harrow	Max.	57.2	74.5	78.8	77.8	78.6	68.8
	Min.	37.5	53.4	59.4	60.8	60.9	52.9
Ridgetown	Max.	56.4	73.3	76.3	78.4	78.5	67.8
	Min.	36.1	51.4	57.6	58.4	59.3	51.0
Guelph	Max.	53.0	70.2	72.8	73.3	77.8	65.3
	Min.	33.3	47.4	53.3	54.5	53.6	44.7
Kemptville	Max.	50.0	69.8	76.6	77.1	77.9	65.7
	Min.	30.0	44.5	51.2	52.7	55.8	46.6
Ottawa	Max.	50.3	69.3	76.6	75.8	76.5	64.6
	Min.	31.3	47.3	54.4	53.0	56.6	46.8
New Liskeard	Max.	43.4*	66.1*	72.5*	76.7\%	74.4	60.9*
	Min.	24.7\%	42.9*	43.6*	49.4*	50.9	43.0*
Kapuskasing	Max.	40.8	62.7	71.4	73.5	69.8	57.3
	Min.	19.9	37.5	40.1	48.0	43.3	40.3
Gore Bay	Max.	46.4	63.8	71.2	76.2	73.9	62.8
	Min.	29.4	42.9	50.8	55.2	55.5	47.8
Fort Francis	Max.	45.3	62.7	72.2	73.5	74.6	63.3
	Min.	24.5	42.9	52.0	53.0	53.1	42.2

RAINFALL

Harrow	1.23	1.41	2.02	6.08	3.40	2.67
Ridgetown	1.72	1.12	4.60	3.61	5.65	2.97
Guelph	2.12	0.94	3.36	3.04	2.00	2.67
Kemptville	2.49	1.68	2.60	3.82	1.75	2.92
Ottawa	2.38	1.52	2.88	5.09	2.21	2.77
New Liskeard	inc.*	inc.*	2.00	3.27	1.95	2.44
Kapuskasing	0.76	6.38	2.02	4.74	6.29	5.05
Gore Bay	1.86	3.41	0.68	0.75	2.40	4.09
Fort Francis	0.74	7.12	3.67	5.59	2.90	4.11

FROM NORMAL

TEMPERATURE		APRIL	MAY	JUNE	JULY	AUGUST	SEPTEMBER
Harrow	Max.	+1.1	+6.1	-.1	-6.0	-3.3	-5.9
	Min.	+1.3	+6.6	+1.7	-2.6	+.9	-1.5
Ridgetown	Max.	+3.7	+8.5	-.4	-3.5	-1.6	-4.3
	Min.	+.6	+5.6	+1.3	-2.7	-.4	-2.9
Guelph	Max.	+2.3	+6.6	-1.3	-5.6	+.5	-4.6
	Min.	+.9	+4.5	+.7	-2.4	-2.0	-4.3
Kemptville	Max.	-1.5	+3.3	+.1	-4.3	-.9	-4.4
	Min.	-1.8	+.4	-2.5	-5.3	-.2	-1.5
Ottawa	Max.	+0.5	+4.0	+1.4	-4.0	-1.3	-4.2
	Min.	+.1	+4.1	-1.4	-4.5	-1.6	-1.1
*New Liskeard	Max.	-2.5	+3.9	+.1	-.1	-.4	-4.0
	Min.	+.4	+6.5	-3.9	-3.7	+.2	-.1
Kapuskasing	Max.	-1.4	+5.1	+2.0	-1.0	-1.5	-3.9
	Min.	+.5	+3.6	-5.0	-3.2	-6.3	-1.3
Gore Bay	Max.	-1.4	+5.5	-.1	-1.5	-1.5	-1.5
	Min.	+2.1	+4.4	+2.4	+.5	+1.9	+.4

RAINFALL

Harrow	-1.3	-1.0	-1.0	+3.8	+1.2	+.2
Ridgetown	-1.3	-2.0	+1.7	+.7	+3.2	+.1
Guelph	-.6	-2.2	+.2	-.5	-.9	-.3
Kemptville	-.1	-1.6	0.0	+.3	-.8	-.3
Ottawa	-.2	-1.3	-.5	+2.4	-.8	-.3
New Liskeard	-	--	-1.3	-.3	-1.0	-.9
Kapuskasing	-1.0	+4.0	-.7	+1.4	+3.0	+1.9
Gore Bay	-.4	+1.1	-1.8	-1.2	+.3	+1.0
Fort Francis	-1.4	+4.5	-.2	+2.0	-1.0	+.8
* Incomplete data						

NORMAL GROWING SEASON WEATHFR RECORDS FOR CERTAIN ONTARIO STATIONS

TEMPERATURE	APRIL	MAY	JUNE	JULY	AUGUST	SEPTEMBER
Harrow Max.	56.1	68.4	78.9	83.8	81.9	74.7
	36.2	46.8	57.7	62.2	60.0	54.4
Ridgetown	52.7	64.8	76.7	81.9	80.1	72.1
	35.5	45.8	56.3	61.1	59.7	53.9
	50.7	63.6	74.1	78.9	77.3	69.9
	32.4	42.9	52.6	56.9	55.6	49.0
Kemptville	51.5	66.5	76.5	81.4	78.8	70.1
	31.8	44.1	53.7	58.0	55.6	48.1
Ottawa Max.	49.8	65.3	75.2	79.8	77.8	68.8
	31.2	43.2	53.0	57.5	55.0	47.9
New Liskeard Max ${ }_{\text {Min }}$	45.9	62.2	72.4	76.8	74.8	64.9
	24.3	36.4	47.5	53.1	50.7	43.1
Kapuskasing	42.2	57.6	69.4	74.5	71.3	61.2
	19.4	33.9	45.1	51.2	49.6	41.6
Gore Bay Max. $\quad \begin{aligned} & \text { Min. }\end{aligned}$	47.8	59.3	71.3	77.7	75.4	64.3
	27.3	38.5	48.4	54.7	53.6	47.4
Fort Frances $\begin{aligned} & \text { Max, } \\ & \text { Min. }\end{aligned}$	48.0	62.3	71.5	77.6	74.3	64.0
	28.4	41.2	51.1	55.6	54.1	45.3

RAINFALL

Harrow	2.5	2.4	3.0	2.3	2.2	2.5
Ridgetown	3.0	3.1	2.9	2.9	2.4	2.9
Guelph	2.7	3.1	3.1	3.5	2.9	3.0
Kemptville	2.6	3.3	2.6	3.5	2.6	3.2
Ottawa	2.6	2.8	3.4	3.5	3.0	3.1
New Liskeard	1.7	2.2	3.3	3.6	2.9	3.3
Kapuskasing	1.7	2.3	2.8	3.3	3.2	3.2
Gore Bay	2.3	2.3	2.5	2.0	2.1	3.1
Fort Frances	2.1	2.6	3.9	3.6	3.9	3.3

PROVINCIAL HAY - PASTURE MIXTURES FOR AREAS OF GOOD DRAINAGE, SERIES A
Percentage of the number of times that the mixture is equivalent to the highest yield.

No.	Mixture	Hay	Aftermath	Season Total
	Vernal 8 Dupuits 2 Climax 6	37.5	66.6	54.1
δ	Vernal 5 Dupuits 5 Climax 4 Lincoln 6	75.0	95.8	95.8
3	Vernal 8 Lasalle 2 Climax 6	58.3	62.5	58.3
1	Vernal 8 Lasalle 2 Climax 4 Lincoln 6	70.8	54.1	66.6
2	Vernal 8 Lasalle 2 Climax 4 Orchard 3	47.6	45.8	37.5
10	Vernal 6 Lasalle 4 Climax 2 Iincoln 5 Orchard 4	66.6	33.3	58.3
4	Vernal 10 Lincoln 10	79.1	66.6	75.0
9	Vernal 10 Climax 6	54.1	58.3	54.1
5	Vernal 6 Lasalle 3 Climax 5 Iincoln 6 Ladino 1	66.6	75.0	58.3
6	Vernal 5 Lasalle 3 Climax 3 Lincoln 5 Orchard 2 Alsike 1 Ladino 1	70.8	41.6	41.6

[^0]Analysis of Variance Table for Hay Yields
Mean Squares of Locations

Zone and Station

Variables	d.f.	1 \& 2 Ridgetown	Guelph	Mindemoya	$\begin{gathered} 5 \\ \text { Kemptville } \\ \hline \end{gathered}$	Ottawa	Ft. William	$\begin{aligned} & 7 \\ & \text { n Ft. William } \end{aligned}$	8 Kapuskasing
Replications	3	288381.3	5358664.0	2900032.0	215194.7	320786.7	1846277.3*	5323586.7	1599512.3
Years	2	4555240.0	56906912.0*	$12948680.0^{\text {* }}$	2319128.0*	5487808.0	$72536407 .{ }^{* * *}$	10C205110.0 ${ }^{\text {K* }}$	3112889.5
Error A	6	218801.3	7419058.7	127901.4	337021.3	366486.0	260877.3	4909192.0	722727.8
Mixtures	7	1799676.6	1020608**	1203392.0゙0	2209806. ${ }^{\text {* }}$ ¢	563877 ****	239028.6	819278.8	459119.6*
Mix x Years	14	374349.7	730386 ** 9	632876.5	1108514.9	251892. ${ }^{\text {喈 }}$	266804.6	472281.7	705488.3
Error B	63	19914.7.7	189167.4	175528.5	278735.8	95339.0	461701.2	696849.3	179053.9
$\begin{aligned} & * \\ & * \\ & * \end{aligned} \quad \text { sig }$	$\begin{aligned} & \text { fican } \\ & n \end{aligned}$	a.t 5% level. " 10% ".							

ANALYSIS OF VARIANGE TABLE FOR AFTERMATH YIELDS
MEAN SQUARES OF LOCATIONS

Variables	d.f.	$\begin{gathered} 1 \& 2 \\ \text { Ridgetown } \\ \hline \end{gathered}$	Guelph		Zones and Stations		$\stackrel{7}{7} \text { Ft.William Ft.William }$		$\begin{gathered} 8 \\ \text { Kapuskasing } \\ \hline \end{gathered}$
					$\begin{gathered} 5 \\ \text { Kemptville } \\ \hline \end{gathered}$	Ottawa			
Replications	3	834839.9	124921.3	187933.0	429096.0	832750.7	462717.0	938958.8	435022.0̂
Years	2	101199520.0	14750124.0	2827884.5	85301558.0	84763769**	6014486.5	4117729.0	3408179.5
Error A	6	263627.3	283066.7	247105.0	261524.0	295182.7	101330.7	219617.0	67019.9
Mixtures	7	264945.7	1965478. ${ }^{\text {\% }}$. ${ }^{\text {a }}$	376130.1	879465 粊	484346. 3	89480.3	428645**	570269.3
Mix x Years	14	273832.6	387493.4	127915.6	$387182.0^{* *}$	130107. 4	57392.7	1193800.7	545572 娄
Error B	63	218662.7	107964.0	108423.8	69778.9	57300.9	87191.0	107759.5	58724.4
* **	nififica	at 5% lev t at 10% lev							

ANALYSIS OF VARIANCE TABLES FOR SEASON TOTAL YIELDS

Mean Square of Locations

Variables	I \＆2d．f．\quad Ridgetown		Guelph Mindemoya		Zones and Stations						
			Kemptville	Ottawa	$\text { Ft. William }{ }^{7}$	$7 \text { Ft. William }$	8 Kapuskasing				
Replications	3	157042．1			5226880.0	2236093.3	2446768.0	1600528．C	： 3714853.3	3792088.0	3659133.3
Years	2	145270900．${ }^{\text {皆 }}$	124580750．＊${ }^{\text {\％}}$	22231708．0\％	134400500．${ }^{\text {筸 }}$	120008520.0	178491780.0 答 1	138305070. 皆	6997247.0		
Error A	6	476378.7	9732261.4	2063762.7	1711309.3	808672.0	396949.3	3320342.7	897752.9		
Mixtures	7	1805677 ${ }^{\text {\％\％}}$	3399812 娄 6	2204301．${ }^{\text {\％}}$ 7	4176640.0	922187.4	409222.9	1213500.6	595833.7		
Mixtures Years	14	942884．6	1118249＊＊	736747.9	1785984.0	341377．1	300352.0	359445．7	2183833.6		
Error B	63	477700.3	324105.1	367685.9	1311077.3	178545.3	636367.8	637917.7	317739.8		
C．V．											

Purpose: To determine the growth curve of sone of our hay forage syecties and varieties to learn the best time to cut these crops for

1. Maximum dry matter yields of
(a) the first crop taken at weekly intervals
(b) the second crop taken as early hay
(c) succeeding crops taken as pasture aftermath
(d) total yield of dry matter.
2. Digestible dry matter through growth period of the first crop.
3. From the growth and digestibility data, to predict the yield and feed value of these hay crops on a certain date or stage of growth, plus the time interval required for the aftermath to be at a certain stage of growth and its yield.

Location: Sections B and C, Ranges 2-5.
Procedure: Establish each spring new seedings of the following:
Alfalfa - Vernal - 12 lbs./acre
DuPuits - 12 1bs./acre
Brome - Canadian - 15 1bs./acre
Saratoga - 15 lbs./acre
Orchard - Frode - 10 1bs./acre
Ottawa 100 - 10 lbs./acre
Timothy - Climax - 8 1bs./acre
Essex - 8 lbs./acre
Design: Split-split plot - 6 replications. Main plots - species; sub plots varieties; sub-sub plots - cutting dates. Plot size - 51 x 121; harvested 31×91.

Data Collected: 1. Weekly yield of dry matter - May 8, 15, 22, 29, June 5, 12, 19, 26 , July $3,10,17,24$, and succeeding crop yields.
2. Percent dry matter at all harvests
3. Weekly height measurements
4. Percent leaf at weekly intervals
5. Stages of growth and development at weekly intervals
6. Ground cover and vigor in fall and following spring
7. Percent digestible dry matter at weekly intervals
8. Percent crude protein at weekly intervals
9. Residual effect on yield in the succeeding hay crop

TEST 151 - HAY GROWTH CURVE - 1961
First Crop Digestibility Data

$\begin{aligned} & \text { Cut } \\ & \text { No. } \end{aligned}$	Date Cut	Stage Cut	$\begin{gathered} \text { Yield } \\ \text { D.M. } \end{gathered}$	$\begin{gathered} \% \\ \text { D.D.M. } \end{gathered}$	$\begin{aligned} & \text { Yield } \\ & \text { D.D.M. } \end{aligned}$	Stage Cut	$\begin{gathered} \text { Yield } \\ \text { D.M. } \end{gathered}$	$\stackrel{\%}{\text { D.D.M. }}$	$\begin{aligned} & \text { Yield } \\ & \text { D.D.M. } \end{aligned}$
VERNAL						DUPUITS			
1	5-8	Veg.	86	48.8	67	Veg.	291	54.3	169
2	5-15	Veg.	1071	69.9	756	Veg.	1141	71.5	829
3	5-23	Veg .	1836	79.1	1645	Veg.	2960	75.1	1548
4	5-29	Veg.	3348	78.3	2299	E. Bud	3033	74.4	2107
5	6-5	E. Bud	3343	75.9	2655	E. Bud	3603	71.2	2628
6	6-12	Bud	4390	69.6	3001	Bud	4308	69.5	3072
7	6-19	Bud	4672	68.6	3036	Bud	4983	66.4	3388
8	6-26	Bud	5434	63.5	3308	E. F.	5780	63.4	3761
9	7-3	Full F.	5898	63.3	3643	Full F .	6240	----	----
10	7-10	Full F .	6959	65.1	3461	E. Seed	7396	63.9	4920
11	7-17	Seed	6864	57.5	4397	Seed	7758	58.3	4694
12	7-24	Seed	6350	57.5	3586	Seed	7051	54.5	4056
CLIMAX						ESSEX			
1	5-8	Veg.	292	50.7	161	Veg,	445	46.9	
2	5-15	Veg.	762	66.5	513	Veg.	702	67.5	486
3	5-23	Veg.	1588	73.4	1232	Veg.	1549	68.6	1123
4	5-29	Veg.	2220	74.3	1553	Veg.	1659	71.8	1174
5	6-5	Joint	3401	67.6	2425	Veg.	3254	66.6	1694
6	6-12	Joint	4218	64.6	2675	Joint	3762	64.0	2293
7	6-19	Boot	4964	62.8	3000	Joint	4797	62.4	2996
8	6-26	Head	5941	--	----	Boot	5684	60.9	3337
9	7-3	Head	6480	54.4	3634	Head	6355	54.4	3480
10	7-10	F1.	7641	51.7	3952	Head	7892	54.1	4265
11	7-17	F1.	7793	49.0	3818	F1.	8603	52.4	4507
12	7-24	F1.	8184	44.9	3893	F1.	8696	46.2	4153

TEST 151 - HAY GROWTH CURVE - 1961
First Crop Digestibility Data

Alfalfa - with both varieties cut 5 which was removed in early September had the highest survival, yield, fall and spring vigor indicated by height.

Brome - with both varieties cut 5 removed on September 5 and cut 12 which was cut only twice during the previous season gave the highest residual yield. They were the tallest and most vigorous in the fall and early spring.

Orchard - Varieties that were tall in the fall were also taller in mid-May, but at harvest time there were little height differences. Those present and yield differences were associated with the number of times the crop was cut in the first harvest year.

Timothy - Cuts 5 and 12 gave the highest yields and were taller in the fall and early spring. The yield did not appear to be closely associated with the time and number of cuts taken.

TEST 151 - HAY GROWTH CURVE
Residual Effect - 1962 Harvest

CutNo.	Date Last After. Cut	Height in cms.			$\begin{gathered} \% \\ \text { Stand } \\ 5 / 11 / 62 \end{gathered}$	No. Cuts 161	$\begin{gathered} \% \\ \mathrm{D} . \mathrm{M} . \end{gathered}$	$\begin{gathered} \text { Yield } \\ \text { D.M. } \\ \text { acre } \end{gathered}$	Date Last After. Cut	Height in cms.				No. Cuts 161	$\begin{gathered} \% \\ \text { D.M. } \end{gathered}$	$\begin{gathered} \text { Yield } \\ \text { DM. } \\ \text { Acre } \end{gathered}$
		11/7	5/11	6/12						11/7	5/11	6/12				

VERNAL

$9-11$	14	18	77	73	4	21.0	3877
$9-18$	7	16	77	62	4	20.4	3606
$9-18$	7	16	76	62	4	21.5	3661
$9-18$	6	16	74	62	4	21.4	3611
$9-5$	12	21	75	75	3	21.8	4154
$9-18$	6	19	76	67	3	21.4	3945
$9-11$	8	18	79	67	3	21.4	3907
$9-11$	8	19	77	67	3	22.1	3914
$9-18$	7	17	78	61	3	21.4	3979
$9-18$	7	17	78	59	3	21.4	3739
$9-18$	7	16	74	57	3	21.2	3791
$9-18$	8	16	77	57	3	21.1	3484

SARATOGA
1
2
3
4
5
6
7
8
9
10
11
12

TEST 151 - hay growth curve
Residual Effect - 1962 Harvest

TEST 151 - HAY GROWTH CURVE

$$
\text { Residual Effect - } 1962 \text { Hay Harvest }
$$

Variance Due To	Degrees of Freedom	Mean Squares	C.V. in \% for
Reps	5	7,270,438.94	
Species	3	31,379,448.87**	28
Main plots	23	7,472,406.78	
Error a	15	2,758,320.98	
Varieties	1	52,778,405.29**	28
Varieties x Speciea	3	1,920,133.69	
Sub plots	47	5,181,591.29	
Error b	20	2,725,272.15	
Dates	11	4,793,475.52**	5
Dates x Species	33	2,326,314.84**	
Dates x Varieties	11	342,239.96**	
Dates x Varieties \times Species	33	2,763,153.42**	
Error c	440	93,263.44	
Total	575	790,453.19	

Alfalfa

1. Dry Matter Yield - The two varieties gave similar dry matter curves with DuPuits higher throughout. Both curves started to level off once the flowering stage of growth was reached about June 18.

In 1961 the yield curves were very similar again, DuPuits was slightly higher throughout. The yield level reached in the two years was similar for Vernal, higher for DuPuits in 1961.
2. Height - DuPuits was taller than Vernal throughout the 1962 growing season. The height curve started to flatten the same time as the dry matter curves; i.e. on June 18, not on a stage basis.

1961 crop heights were similar to those in 1962 , attaining about the same length of stem.
3. Percent Dry Matter - Again in 1962, the crop was cut only when dry. The dry matter percentage was lower for DuPuits until the stage when the buds emerged. The two varieties were similar after that date, both showing a marked increase in dry matter between June 25 and July 3, a late flower stage.

In 1961, the curves were very similar but came together sooner. The varieties were higher ia percent dry matter in 1962.
4. Percent Crude Protein - In general the two varieties were the same in protein content, Vernal being slightly higher during the bud to full bloom stage.

In 1961, both varieties were identical throughout in protein content on any date. The crude prote: n content ranged from approximately 33 to 14 percent both years.
5. Percent Digestible Dry Matter - The two varieties gave similar shaped curves with Vernal slightly aigher in digestibility on a date basis, particularly in the bud to early flower stages. With Vernal, this early flower stage gave 1500 to 2000 lbs. more dry matter than the bud or late bud stage with a reduction of only 3% in D.D.M. below the late bud anc still well over 60% D.D.M. content.

In 1961, the two varieties were also similar on any date and at the bud to bloom stages. gain the early flo jer stages gave high digestibilities and marked increases in yield over the bud stages of growth.

In general, the curves of t he percent protein, leaf, digestibility and dry matter were very similar in 1961 ard in 1962 , with all shapes changing on the same date.
6. Leaf - Vernal alfalfa had a higher percentage and a higher yield of leaves at any date or a^{+}any similar stage than DuPuits. Both varieties had their maximum yield of leaf at full bloom after thich more leaves were lost than were formed. The leaf percentage hit a plateau witl. both varieties from the late bud to late bloom stages. The atems increased in yilld throughout the season.

In 196 I , Vernal was also a glier in percent leaf than Dupuits but similar in yield at any dite or stage. Again, both varieties decreased very little in percent leaf during bud to the flower stages of development.

TEST 157 - HAY GROWTH CURVES - 1962

First Crop Data (Yield lbs./acre)

						Weekly			Weekly		\%	Yield	\%	Yield
Cut	Date	Stage	Height	\%	Yield	Increase	\%	Yield	Increase	Yield	Crude	Crude	Digestible	Digestibla
No.	Cut	Cut	cms.	D.M.	D.M.	D.1.	Leaf	Leaf	Leaf	Stem	Protein	Protein	Dry Matter	Dry Matter

VERNAI

1	5-7	Veg.	17	21.8	279	----	----	-	----	--	32.3	89	74.8	206
2	5-14	Veg.	20	19.6	519	240		--...	--...	--.--	29.9	187	75.3	445
3	5-22	Early Bud	38	20.4	1748	1229	55.3	967	----	781	23.9	420	75.0	1341
4	5-28	Early Bud	51	20.2	2307	559	56.3	1299	332	1008	22.9	521	76.4	1646
5	6-4	Buds En.	62	21.7	3442	1135	49.8	1714	415	1728	21.8	750	71.2	2582
6	6-11	Late Bud	75	21.3	4171	729	46.8	1952	238	2219	20.3	839	65.8	2628
7	6-18	Early F1.	93	21.3	5486	1315	45.4	2491	539	2995	19.2	1053	63.2	3518
8	6-25	Full F1.	101	22.5	5615	129	44.0	2471	- 20	3144	18.2	1022	62.0	3523
9	7-3	Late F1.	96	26.0	6222	607	38.0	2364	-107	3858	16.3	1018	57.8	3463
10	7-9	E. Seed	101	27.2	6806	584	36.7	2498	134	4308	16.8	1139	60.6	4345
11	7-16	E. Seed	106	28.2	6356	-450	33.2	2110	-388	4246	14.8	939	59.9	3706
12	7-23	E. Seed	98	30.4	6471	115	31.4	2032	- 78	4439	14.4	935	57.4	3721

DUPUITS

1	5-7	Veg.	25	15.9	817	--..-	-…	----	--...	--**	34.1	277	74.3	588
2	5-14	Veg.	33	16.0	1344	527	--...	---"	--**	--."	31.5	423	80.2	1131
3	5-22	Buds En.	54	17.3	2635	1291	48.3	1273	----	1362	24.2	637	73.9	1972
4	5-28	Buds Em.	65	19.6	3270	635	48.5	1586	313	1684	21.8	711	73.0	2348
5	6-4	Late Bud	76	21.1	3936	666	43.4	1708	122	2228	20.0	784	69.7	2692
6	6-11	Early Fl.	88	21.5	4555	619	41.1	1872	164	2683	18.5	844	65.2	2991
7	6-18	Full Fi.	102	22.4	5819	1264	41.7	2426	554	3393	17.4	1014	63.6	3712
8	6-25	Late Fl.	107	22.1	5592	-227	41.1	2298	-128	3294	17.4	971	60.0	3317
9	7-3	Late Fl.	107	27.2	6460	868	33.2	2145	-153	4315	17.0	1103	60.5	3829
10	7-9	E. Seed	105	28.9	7174	714	34.3	2461	316	4713	15.8	1132	60.0	4241
11	7-16	E. Seed	108	28.6	5878	-1296	32.7	1922	-539	3956	14.1	843	59.3	4439
12	7-23	E. Seed	111	29.2	6531	653	24.5	1600	-322	4931	13.9	860	55.6	3758

TEST 157 - HAY GROWTH CURVES - 1962
 Height Yellowing Lower Leaves of Alfalfa (cms.)

Variety	Date	Total Height	Leaf Height
Vernal	5-22	38	12
Dupuits		54	20
Vernal	5-28	51	14
DuPuits		65	24
Vernal	6-4	62	21
DuPuits		76	29
Vernal	6-11	75	27
DuPuits		88	36
Vernal	6-18	93	31
DuPuits		102	40
Vernal	6-25	101	52
DuPuits		107	57
Vernal	7-3	96	51
Dupuits		107	62
Vernal	7-9	101	58
Dupuits		105	61
Vernal	7-16	106	61
DuPuits		108	67
Vernal	7-24	98	72
DuPuits		111	84

VERNAL ALFALFA - 1962

DUPUITS ALFALFA - 1962

IEST 157 - GROWTH CURVES - 1962
Aftermath Yields (Lbs./A.)

```
First Cut Aftermath Harvest Dates
```


Duruits

Heights and Stages - Alfalfa

Timothy

1. Dry Matter Yield - The two varieties gave similar growth curves with Essex yielding approximately 500 pounds less although ending at the same level. Climax curve started to flatten a week before Essex but this occurred when both were at the same stage of growth.

In 1961 the yields and curves were almost identical throughout.
2. Height - Essex was shorter throughout than C1imax, but both were similar when the same stages are compared.

In 1961 the height was taken to the flag leaf with Climax taller from jointing to heading after which they were similar. However, at the same stage of growth, the varieties were the same height.
3. Percent Dry Matter - Essex was higher in dry matter percentage until the late joint to boot stage, after which Climax was higher in dry matter. The variety curves in 1962 were identical in shape.

In 1961, the varieties appear to have performed the same as in 1962 with the dry matter percentages crossing at the joint stage.
4. Percent Crude Protein - The protein content of the two varieties gave curves which were very similar throughout on all dates.

In 1961, Essex was $2-4 \%$ higher until the jointing stage, after which the two varieties were similar on any date.
5. Percent Digestible Dry Matter - On any date, Essex was higher in digestibility than Climax in 1962, with the exception of June 4, when they were similar. Up until that date, Essex was $4-5 \%$ higher and this difference widened $7-8 \%$ and was 5% at the time of the last cut.

In 1961, the two varieties were very similar with Climax being slightly higher in the late vegetative stage. Essex was $\mathbf{2 - 3} \%$ higher than Climax for the last few cuts. They were similar, however, at the same stage of growth.
6. Leaf - Essex was higher at any date in percent leaf than Climax, but these differences narrowed as the flowering stage approached. At the same stages of growth, however, these data were similar as were leaf and stem yields.

In 1961, Essex was higher in percent leaf than C1imax at any date, but performed similar as in 1962 with the same stages of growth giving similar percent leaf and leaf yield.

```
TEST 157 - hay growth Curves - 1962
```

First Crop Data (Yield lbs/acre)

						Weekly			Weekly		\%	Yield	\%	Yfeld
Cut	Date	Stage	Height	\%	Yield	Increase	\%	Yield	Increase	Yield	Crude	Crude	Digestible	Digestible
No.	Cut	Cut	cms.	D.M.	D.M.	D.M.	Leaf	Leaf	Leaf	Stem	Protein	Protein	Dry Matter	Dry Matter

CLIMAX

1	5-7	Veg.	23	19.9	599	----	----	--...	----	----	28.7	172	71.9	443
2	5-14	Veg.	28	20.5	1175	576	---.	----	----	--.--	23.2	275	70.4	863
3	5-22	Veg.	41	20.2	2385	1210	----	--.-	----	----	17.9	437	67.0	1519
4	5-28	Joint	53	18.7	2878	493	73.7	2121	----	757	15.9	461	65.6	1919
5	6-4	Boot	70	21.7	4283	1405	55.8	2390	269	1893	13.4	571	66.7	2964
6	6-11	Boot	78	20.2	4820	537	49.2	2371	- 19	2449	11.4	514	61.8	3191
7	6-18	Head	90	24.9	5589	769	43.5	2431	60	3158	10.2	569	58.1	3420
8	6-25	Head	102	28.0	6631	1042	34.9	2314	-117	4317	9.3	619	52.5	3643
9	7-3	Flower	113	36.4	6890	259	33.3	2294	- 20	4596	7.8	538	50.0	3578
10	7-9	Flower	113	37.7	7579	689	31.0	2349	55	5230	7.0	520	48.3	3771
11	7-16	Seed	114	41.8	7440	-139	32.5	2418	69	5022	6.5	483	49.5	3779
12	7-23	Seed	115	41.7	7752	312	23.5	1821	-597	5931	6.7	513	47.6	3824

ESSEX

1	5-7	Veg.	. 22	20.9	485	--	----	--..-	--.--	----	30.7	149	74.3	343
2	5-14	Veg.	24	22.1	808	323	--.-	----	-..-	-----	23.9	193	73.6	633
3	5-22	Veg .	38	22.2	1929	1121	---*	--."	----	----	18.7	360	70.3	1433
4	5-28	Joint	45	22.6	2455	526	87.7	2153	----	302	15.6	383	70.9	1792
5	6-4	Joint	58	22.3	3523	1068	64.9	2286	133	1237	14.6	518	66.2	2538
6	6-11	Joint	68	20.9	4291	768	59.5	2553	267	1738	12.9	558	64.4	2922
7	6-18	Boot	80	22.1	4813	522	52.1	2508	- 45	2305	10.8	522	64.5	3327
ε	6 -25	Head	87	25.1	5941	1128	41.2	2448	- 60	3493	10.1	598	58.4	3482
9	7-3	Head	101	31.1	6734	793	35.3	2377	- 71	4357	8.5	570	56.1	3742
10	7-9	Flower	99	34.3	6803	69	34.4	2340	- 37	4463	7.7	526	54.0	4033
11	7-16	Flower	108	38.5	7654	851	33.4	2556	216	5098	6.7	508	55.3	4411
12	7-23	Seed	107	38.8	7412	-242	32.0	2372	-184	5040	6.8	504	52.5	4127

CLIMAX TIMOTHY - 1962

ESSEX TIMOTHY - 1962

TEST 157 - GROWTH CURVES - 1962
Aftermath Yields (Lbs./A)

Heights and Stages - Timothy
First Growth

$\left[\begin{array}{l} \mathrm{Cut} \\ \mathbb{N} ? \\ \text { : } \end{array}\right.$	Yield	Ht	Stg	5-14	5-22	5-28	6-4	6-11	6-18	6-25	7-3	7-9	7-16	7-23	7-30	8-8	8-16	8-20	8-28	9-4	9-12	10-3	10-29
L $\frac{1}{5-7}$	599	23	A	14 A	28 A	39 B	52 B	65 C	78 D	88 D	0	0	13 A	19 A	25 A	28 A	34 B	39 B	41 C	143 F			13 A
$2 \quad 5-14$	1175	28	A		25 A	35 B	48 B	66 c	76 D	88 D	0	7 A	14 A	23 A	28 A	36 A	41 C	46 D	50 D	53 F			12 A
3 5-22	2385	41	A			15 A	27 B	36 B	47 D	64 D	5 A	8 A	13 A	21 A	26 A	31 A	35 B	37 B	39 c	44 C		65 F	13 A
4 5-28	2878	53	B				6 A	20 A	31 A	46 B	53 C	9 A	13 A	19 A	23 A	27 A	31 B	32 B	35	-37		46 D	12 A
$5 \quad 6-4$	4283	70	C					0	$14 . \mathrm{A}$	28 A	35 A	40 B	42 B	48 C	16 A	19 A	23 A	$24 . \mathrm{A}$	24 A	25 A		25 A	12 A
$6 \quad 6-11$	4820	78	C						0	15 A	26 A	29 A	32 A	37 B	39 B	18 A	23 A	24 A	26 A	26 A		26 A	12 A
$7 \quad 6-.28$	5589	90	D							-	$1{ }_{4} \mathrm{~A}$	19 A	22 A	28 A	33 B	44 B	50 D	16 A	20 A	22 A			15 A
8 6-25	6631	102	E								0	11 A	18 A	26 A	36 A	46 B	50 B	56 B	17 A	21 A			17 A
9 7-3	6890	113	F									0	6 A	19 A	27 A	34 A	44 B	46 B	50 C	13 A			13 A
10 7-c,	7579	113	F										12 A	19 A	29 A	39 A	47 B	52 C	56 D	14 A			15 A
117	7470	71/4	G											6 A	18 A	33 A	43 A	45 B	49 C	52 C			14.4
$12 \quad 7-23$	7752	115	G												14 A	25 A	39 A	40 A	46 B	48 B	50 C		15 A
F'ssex																							
$1 \begin{array}{ll}1 & 5-7\end{array}$	485	22	A	12 A	24 A	32 B	42 B	57 C	68 C	78 D	0	0	10 A	18 A	20 A	25 A	28 B	30 A		35 C			
$2 \quad 5-14$	808	24	A		23 A	30 B	39 B	58 B	71 C	82 D	0	0	10 A	19 A	22 A	27 A	30 B	32 B	33 c	35 c			13 A
3 5-22	1929	38	A			16 A	25 A	37 B	50 C	63 D	4 A	9 A	11 A	17 A	21 A	26 A	28 B	30 B	30 c	31 c		41 F	12 A
4 5-28	2455	45	B				15 A	26 B	38 B	53 C	61 D	5 A	10 A	13 A	20 A	22 A	25 A	25 A	24 B	27 B		30 B	12 A
$56-4$	3523	58	B					0	15 A	30 A	38 A	42 B	44 B	49 C	17 A	20 A	23 A	24.	26 A	27 B		29 B	13 A
$6 \quad 6-17$	4291	68	B						0	15 A	27 A	31 A	33 A	38 B	37 B	18 A	22 A			23 A		23 A	13 A
$7 \quad 6-18$	4813	80	C							0	13 A	21 A	22 A	28 A	31 B	37 B	42 C	14 A	18 A	20 A			14 A
\% 6-25	5941	87	D								0	0	14 A	21 A	27 A	37 B	42 B	43 B	16 A	19 A			15 A
9 $7-3$ 10 $7-9$	6734 6803	101	$\underset{\text { E }}{\text { E }}$									0	7 A	18 A	26 A	32 A	39 B	42 B	46 C	12 A			14.4
$\begin{array}{ll}710 & 7-9 \\ 71 & 7-16\end{array}$	6803	99	F										0	11 A	24 A	34 A	40 A		47 C	$13 A$			
$\begin{array}{ll}11 & 7-16 \\ 13 & 7-23\end{array}$	7654	108	F											10 A	19 A	32 A	41 A		$\begin{array}{ll} 45 & B \\ \hline \end{array}$	$\left\lvert\, \begin{array}{ll} 47 \mathrm{c} \\ \hline 10 \end{array}\right.$			$\frac{14}{11} \mathrm{~A}$
123	7412	107	G												11 A	24 A	34 A	37 A	39 B	40 B	42 c		

Orchardgrass

1. Dry Matter Yield - The curves of the two varieties were very similar in shape. Frode grew faster and outyielded Ottawa throughout the season on any given date but both leveled off after the seed stage and ended at the same level. However, at similar stages of growth they had the same yield.

In 1961, the yield was very similar to 1962, Frode again being slightly higher on any date but similar at the same stage.
2. Height - The two variety height curves were very similar. Frode was taller on all dates but like yield, both varieties ended at the same height. They were the same height at the same stages of growth.

In 1961, the height curves were similar to those in 1962, Frode being taller, both ending the same and again being similar at the same stage of growth.
3. Percent Dry Matter - Varieties were similar in thevegetative stage. Once headed, Frode was higher and this difference gradually widened. There appears to be little similarity at the same stage of growth.

In 1961, again they were similar at the vegetative stage, gradually widened as in 1962, and were not similar at the same stages of growth.
4. Percent Crude Protein - The two varieties started at the same content but Frode was lower at all dates, similar at a given stage, until both were in flower, after which they were the same.

In 1961, the protein content was lower than in 1962, but the same general characteristics as above.
5. Percent Digestible Dry Matter - The curves on digestibility were very similar with the two varieties. Ottawa was $2-3 \%$ higher throughout than Frode but very similar at the same stage of growth.

In 1961, the curve shapes of the two varieties was very similar. Ottawa was again higher throughout but the two were similar at the same stage of development.
6. Leaf - In percentage and yleld of leaf, Frode was lower at all dates and stages of growth than Ottawa. The Frode leaf yield leveled off, the Ottawa continued to increase with succeeding cuts.

In 1961, the percentage and yield of leaves was very similar on any one date, Yield increases were largely due to an increase in stem weight.

TEST 157 - HAY GROVTH CURVES - 1962

First Crop Data (Yield lbs./acre)

	Date Cut	Stage Cut	Height cms.	$\begin{gathered} \% \\ \text { D.M. } \end{gathered}$	$\begin{gathered} \text { Yield } \\ \text { D.M. } \end{gathered}$	Week1y Increase D.M.	$\begin{gathered} \% \\ \text { Leaf } \end{gathered}$	Yield Leaf	Weekly Increase Leaf	Yield Stem	$\begin{gathered} \% \\ \text { Crude } \\ \text { Protein } \end{gathered}$	Yield Crude Protein	Digestible Dry Matter	Yield Digestiole Dry Matter

FRODE

1	5-7	Veg.	27	16.2	675	----	----	----	----	--.-	29.5	200	76.2	556
2	5-14	Veg.	34	17.7	1341	666	----	----	----	----	22.9	310	77.6	1161
3	5-22	Boot	52	18.1	2561	1220	59.6	1526	----	1035	16.9	462	72.2	1914
4	5-28	Head	64	19.5	3429	868	53.4	1831	305	1598	13.9	480	72.1	2567
5	6-4	Head	89	23.2	4616	1187	43.7	2017	186	2599	11.9	547	67.6	3022
6	6-11	Flower	107	23.3	5134	518	40.4	2074	57	3060	10.0	556	60.5	3208
7	6-18	Flower	116	27.8	5444	310	41.8	2276	202	3168	9.0	488	57.4	3079
8	6-25	Seed	116	30.8	6093	649	30.4	1852	-424	4241	7.7	472	48.4	$29+2$
9	7-3	Seed	118	35.8	5891	-202	34.7	2044	192	3847	7.5	438	48.9	28;7
10	7-9	Seed	119	38.8	6295	404	39.4	2480	436	3815	7.3	462	46.5	$30 \div 8$
11	7-16	Seed	122	41.8	5385	-910	38.2	2057	-423	3328	6.6	356	46.4	$25 ? 6$
12	7-23	Seed	121	41.7	5191	-194	39.7	2062	5	3129	6.1	317	39.0	2155

OTTANA 100

1	5-7	Veg.	21	18.0	384	---	----	----	----	----	32.2	124	76.5	256
2	5-14	Veg.	25	17.5	654	270	----	----	----	----	27.6	183	77.7	619
3	5-22	Joint	42	18.6	2042	1388	93.7	1913	----	129	21.3	438	73.6	1541
4	5-28	Boot	53	19.1	2809	767	73.2	2056	143	753	17.4	491	74.9	2142
5	6-4	Head	70	21.7	3473	664	60.2	2091	35	1382	14.0	487	72.2	2508
6	6-11	Head	89	21.2	4535	1062	51.6	2340	249	2195	12.6	513	65.3	3033
7	6-18	Flower	108	24.2	4872	337	50.0	2436	96	2436	11.0	540	62.4	2906
8	6-25	Flower	109	27.1	5137	265	41.6	2137	299	3000	9.5	489	54.8	2999
9	7-3	Seed	119	33.0	6100	963	46.3	2824	687	3276	8.5	515	49.7	2974
10	7-9	Seed	115	34.3	6361	261	44.5	2831	7	3530	7.8	499	49.1	3139
11	7-16	Seed	114	36.7	5949	-412	46.1	2742	- 89	3207	7.0	416	50.0	2816
12	7-23	Seed	121	33.7	5661	-288	56.8	3215	473	2446	6.9	394	47.5	2689

Dates Cut

Dates

-suจ uf 748fə

TEST 157 - GROWTH CURVES - 1962
Aftermath Yields (Ibs./A)

TEST 157 - HAY GROWTH CURVES - 1962
Heights and Stages - Orchard Grass

jut First Growth				Aftermaths																		
Ho. Iate	Yield	Ht	Stg	5-14	15-22	5-28	6-4	6-111	6-18	6-25	7-3	17-9	7-16	7-23	7-30	/8-8	8-16	8-20	8-28	9-4	10-3	10-29
$\frac{1}{7} \frac{1}{5}$																						
$1{ }^{1} 5-7$	675	27	A	13 A	31.4	42 C	63 D	86 F	98 F	$22{ }^{2}$ A	31 A	36 A	38 A	40 A	39 A	A 42 A	21.4	24.	A 23 A	A 31 A		24 A
$25-1 / 4$	1341	34	A		28 h	38 C	61 D	82 E	94.7	22 A	32 A	34 A	37 A	38 A	35 A	A 40 A	20 A	24.4	A 26 A	A 29 A		204
3 5-22	2561	52	C			16 A	30 A	39 A	56 A	79 F	19 A	26 A	32 A	36 A	36 A	A 40 A	41 A	42 A	A 43 A	A 44		14. ${ }^{\text {A }}$
$45-28$	3429	64	D				19 A	30 A	44.	60 h	65 A	12 A	24 A	31 A	34 A	36 A	47 A	42 A	i 42 A	A 42 A		14.
$5 \quad 6-4$	4616	89	E					20 A	34 A	45 A	55 A	15 A	26 A	35 A	35 A	A 38	41 A	43 A	A 18	A 44		15 A
\% t-11	5134	107	F						21 A	35 A	42 A	148 A	52 A	20 A	30 A	37 A	38 A	39 A	A 139 A	, 38 A		13 A
$7 \quad t-18$	5444	176	F							23 A	31 A	39 A	42 A	48 A	51 n	83 A	35 A	2. A	A 62	A 40 A	A 40 A	13 A
\% t-25	6093	176	G								16 ^	23 A	27 A	34 A	4\% A	A $4 . \mathrm{A}$	59 A	60 A	A 27 A	A 27 A	A 27 A	14 A
9 7-3	5891	118	G									17 A	22 A	30 A	38 A	A 46 A	51 A	53 A	A İS A	A 24	A 25 A	I3 A
10 7-9	6295	119	G										18 A	30 A	36 A	A 51 A	60 A	61 A	A $21 . A$	26	A 26 A	15 A
11 7-16	5385	122	G											22 A	32 A	A 43 A	51 A	53 A	A Si. A	A 15 A	A 23 A	14.4
12 7-:3	5191	121	G												24 A	A 39 A	47 A	49 A	$\mathrm{A}, 5 \mathrm{~A}$	17 A	124	13 A
Ottawa 10)																						
$15-7$	384	21	A	15 A	32 A	42 A	55 D	77 E	97 F	21 A	31 A	35 A	35 A	37 A	32 A	35 A	19 A	22 A	A 23 A	A 24 A		18 A
2. 5-14	654	25	A		24 A	35 A	44 D	70 E	92 F	21 A	30 A	33 A	34 A	34 A	31 A	32 A	19 A	22 A	A 24 A	A $2{ }_{4}^{\prime} \mathrm{A}$		16 A
3 5-2.2	2042	42	B			17 A	29 A	38 A	54 D	69 F	19 A	27 A	31 A	33 A	34 A	39 A	41 A	42 A	Al 4 A	12/ A		$14 . \mathrm{A}$
4 5-28	2809	53	c				20 A	31 A	40 A	55 A	64 A	13 A	23 A	31 A	33 A	37 A	38 A	39 A	A 40 A	A 43		13 A
$5 \quad 6-4$	3473	70	D					21 A		43 A	54 A		25 A		32 A	35 A	35A			A 36 A		17 A
$6 \quad 6-11$	4535	89	E						21 A	34 A	41 A	46 A	50 A	21 A	29 A	A 34 A	35 n	. 36 is	i 36 a	A 36 A		13 A
$7 \quad 6-1.8$	4872	108	F							21 A	29 A	34 A	38 A	42 A	45 A	22 A	30 A	32 A	A 33 A	A 33 h	L 33 A	13 A
$\begin{array}{ll}5 & 6-25\end{array}$	5137	109	F								16 A	22 A	27 A	33 A	38 A	A 48 A	51 A	53 A	417 A	124	A 24 i	12 A
$9 \quad 7-3$	6100	119	G									8 A	20 A	28 A	37 A	1 42 A	47 A	49 A	A 17 A	A 23 A	A 23 A	12 A
$10 \quad 7-9$	6361	175	G										18 A		35 A	144	52 A	54 A	A 17 A	A 23 A	A 23 i	13 A
117	5949	114	G													A 42 A	48 A	52 A	A 59 A	A 15	122	13 A
12 7 7-23	5661	121	G												25 A	A 35 A	41 A	47 A	A 52 A	A 16	A 23 A	14 A

1. Dry Matter Yield - The two varieties have similar yield curves but the Canada brome did vary some. Saratoga yielded more throughout the season and was higher at the last harvest. This was unlike the other grass species which were similar in final yield. Both curves started to flatten on the same date, June 4, but not at the same stage of growth.

In 1961, the curves of the two varieties were identical in shape but Saratoga again was slightly higher in yield. Unlike 1962, the two varieties gave similar yields at the same stage of growth.
2. Height - Saratoga was about 10 cms . taller than Canada brome until heading, after which it was 20 cms. taller, with little agreement at similar stages.

In 1961, the height curves were similar in shape, Saratoga was again taller and this difference also was greater during the later cuts.
3. Percent Dry Matter - Both varieties were similar until the boot stage of development after which Saratoga was $2-4 \%$ higher in dry matter; however, they were similar at the last cut.

In 1961, the same trends occurred as in 1962.
4. Percent Crude Protein - In general, Saratoga was lower than Canada brome in protein throughout the season, coming together only at the flowering stage.

In 1961, the two varieties performed as in 1962.
5. Percent Digestible Dry Matter - In 1962 the two varieties in general were similar with some overlapping from week to week. Saratoga started out higher but after heading both were similar on a given date and stage.

In 1961, the varieties performed very similar as in 1962.
In both years bromegrass was higher in digestibility than the other species tested.
6. Leaf - Saratoga was higher in percent leaf at most dates of cut and at most stages. This variety was considerably higher in weight of leaves from the heading stage.

In 1961, there was a general similarity in the percent and yield of leaf at the same dates and stages.

In both years, the percentage and yield of leaf was lower with bromegrass than with the other grass species.

TEST 157 - HAY GROVTH CURVES - 1962

First Crop Data (Yield lbs./acre)

Cut No.	Date Cut	Stage Cut	Height cms.	$\begin{gathered} \% \\ \text { D.M. } \end{gathered}$	$\begin{gathered} \text { Yield } \\ \text { D.M. } \end{gathered}$	$\begin{gathered} \text { Weekly } \\ \text { Increase } \\ \text { D.M. } \end{gathered}$	$\begin{gathered} \% \\ \text { Leaf } \end{gathered}$	Yield Leaf	Weekly Increase Leaf	Yield Stem	$\begin{gathered} \% \\ \text { Crude } \\ \text { Protein } \end{gathered}$	Yield Crude Protein	Digestible Dry Matter	Yield Digestible Dry Matter
SARATOGA														
1	5-7	Veg.	29	19.6	1081	----	----	---	---*	----	29.1	314	77.3	817
2	5-14	Veg.	35	19.0	1523	442	----	--	----	----	23.3	354	77.7	1230
3	5-22	Boot	59	20.1	2957	1434	64.0	1892	--	1065	17.9	530	72.9	2276
4	5-28	Boot	71	22.3	3872	915	52.3	2025	133	1847	14.4	559	70.8	2689
5	6-4	Head	100	25.8	5433	1561	38.1	2070	45	3363	12.5	682	74.2	3808
6	6-11	Head	117	28.2	5661	228	34.4	1947	-123	3714	10.6	601	71.5	3985
7	6-18	Head	134	33.0	6404	743	30.3	1940	- 7	4464	9.6	618	66.2	4161
8	6-25	Flower	134	36.7	7266	862	25.0	1817	-123	5449	7.9	575	63.6	4656
9	$7-3$	Seed	129	40.6	7330	64	25.2	1847	30	5483	7.8	531	64.6	4354
10	7-9	Seed	132	41.8	7525	195	24.6	1851	4	5674	6.4	484	66.7	4782
11	7-16	Seed	133	45.1	7456	- 69	23.5	1752	- 99	5704	6.0	447	67.7	4845
12	7-23	Seed	139	44.9	7563	107	22.7	1717	- 35	5846	5.6	426	66.5	5374
CANADA BROME														
1	5-7	Veg.	22	20.4	650	---	----	----	----	----	31.1	202	70.9	516
2	5-14	Veg.	26	20.9	911	261	--.-	--.-	----	-..-	26.0	241	72.0	785
3	5-22	Joint	45	20.2	2437	1526	71.1	1733	----	704	21.4	543	68.6	1615
4	5-28	Boot	53	21.7	2894	457	60.7	1757	24	1137	17.7	511	75.1	2181
5	6-4	Head	85	22.9	4997	2103	42.8	2139	382	2858	14.7	733	72.8	3478
6	6-11	Head	100	23.8	4568	-429	34.2	1562	-577	3006	12.2	556	71.2	3117
7	6-18	Head	114	28.9	5779	1211	27.4	1583	21	4196	11.1	644	65.3	3771
8	6-25	Flower	114	33.4	5776	- 3	22.2	1282	301	4494	8.9	513	65.2	3728
9	7-3	Flower	117	36.8	6471	695	20.9	1352	70	5119	7.5	508	65.5	4311
10	7-9	Seed	116	37.9	6974	503	18.6	1297	- 55	5677	7.6	529	64.3	4515
11	7-16	Seed	117	42.3	6699	275	19.6	1313	16	5386	7.0	463	66.2	4419
12	7-23	Seed	115	43.9	6348	351	19.6	1244	- 69	5104	6.5	415	66.8	4206

TEST 157 - GROWIH CURVES - 1962
Aftermath Yields (Lbs./A)

TEST 157 - HAY GROWTH CURVES - 1962
Heights and Stages - Bromegrass

HAY GROWTH CURVES - 1961, 1962
Per Cent Digestible Dry Matter

First Growth		Alfalfa		Timothy		Orchard		Brome	
Cut No.	Date	Vernal	DuPuits	C11max	Essex	Frode	Ott. 100	Saratoga	Canada
1961-TEST 151									
1	5-8	48.8	54.3	50.7	46.9	46.6	37.1	61.2	60.1
2	5-15	69.9	71.5	66.5	67.5	63.7	60.0	74.9	75.6
3	5-23	79.1	75.1	73.4	68.6	69.8	68.6	78.4	74.0
4	5-29	78.3	74.4	74.3	71.8	67.6	71.5	79.7	73.2
5	6.5	75.9	71.2	67.6	66.6	63.8	64.6	69.6	72.5
6	6-12	69.6	69.5	64.6	64.0	55.4	64.5	65.5	69.5
7	6-19	68.6	66.4	62.8	62.4	55.4	60.5	63.5	63.9
8	6-26	63.5	63.4	----	60.9	53.1	59.2	60.1	63.7
9	7-3	63.3	--..	54.4	54.4	45.7	53.3	60.9	60.2
10	7-10	65.1	63.9	51.7	54.1	54.5	55.5	60.9	60.3
11	7-17	57.5	58.3	49.0	52.4	48.9	48.1	58.9	57.2
12	7-24	57.5	54.5	44.9	46.2	45.1	43.8	58.2	57.7
1962-TEST 157									
1	5-7	74.8	74.3	71.9	74.3	76.2	76.5	77.3	70.9
2	5-14	75.3	80.2	70.4	73.6	77.6	77.7	77.7	72.0
3	5-22	75.0	73.9	67.0	70.3	72.2	73.6	72.9	68.6
4	5-28	76.4	73.0	65.6	70.9	72.1	74.9	70.8	75.1
5	6-4	71.2	69.7	66.7	66.2	67.6	72.2	74.2	72.8
6	6-11	65.8	65.2	61.8	64.4	60.5	65.3	71.5	71.2
7	6-18	63.2	63.6	58.1	64.5	57.4	62.4	66.2	65.3
8	6-25	6.20	60.0	52.5	58.4	48.4	54.8	63.6	65.2
9	7-3	57.8	60.5	50.0	56.1	48.9	49.7	64.6	65.5
10	7-9	60.6	60.0	48.3	54.0	46.5	49.1	66.7	64.3
11	7-16	59.9	59.3	49.5	55.3	46.4	50.0	67.7	66.2
12	7-23	57.4	55.5	47.6	52.5	39.0	47.5	66.5	66.8

TEST 157 - HAY GROWTH CURVES - 1962
Per Cent Crude Protein

First Growth		Alfalfa		Timothy		Orchard		Brome	
Cut No.	Date	Vernal	Dupuits	Climax	Essex	Frode	Ott. 100	Saratoga	Canada
1	5-7	32.3	34.1	28.7	30.7	29.5	32.2	29.1	31.1
2	5-14	29.9	31.5	23.2	23.9	22.9	27.6	23.3	26.0
3	5-22	23.9	24.2	17.9	18.7	16.9	21.3	17.9	21.4
4	5-28	22.9	21.8	15.9	15.6	13.9	17.4	14.4	17.7
5	6-4	21.8	20.0	13.4	14.6	11.9	14.0	12.5	14.7
6	6-11	20.3	18.5	11.4	12.9	10.0	12.6	10.6	12.2
7	6-18	19.2	17.4	10.2	10.8	9.0	11.0	9.6	11.1
8	6-25	18.2	17.4	9.3	10.1	7.7	9.5	7.9	8.9
9	7-3	16.3	17.0	7.8	8.5	7.5	8.5	7.8	7.5
10	7-9	16.8	15.8	7.0	7.7	7.3	7.8	6.4	7.6
11	7-16	14.8	14.1	6.5	6.7	6.6	7.0	6.0	7.0
12	7-23	14.4	13.9	6.7	6.8	6.1	6.9	5.6	6.5

Early Cut - June 1, 1962

Asscciation	Ibs. D June I	/Acre, July 5	falfa Aug 22	ass Total	$\text { June } 1$	$\begin{aligned} & \text { Alfald } \\ & \text { July } 5 \end{aligned}$	Aug 22	$\text { June } \begin{gathered} \neq 1 \end{gathered}$	Grass July 5	Aug. 22
$\begin{aligned} \text { LuPuits } & + \text { Iincoln } \\ & + \text { Climax } \\ & + \text { Frode } \end{aligned}$	4236	2230	2631	9097	88.8	98.3	98.4	11.2	1.7	1.6
	4162	2248	2803	9213	96.3	99.6	98.0	3.7	. 4	2.0
	4092	2814	2814	9197	82.4	91.1	86.3	17.6	8.9	13.7
Mean	4163	2749	2749	9168	89.2	96.3	94.2	10.8	3.7	5.8
$\begin{aligned} \text { Vernal } & + \text { Iincoln } \\ & + \text { Climax } \\ & + \text { Frode } \end{aligned}$	4413	1790	2280	8483	71.9	90.1	88.2	28.2	9.9	11.8
	4000	1813	2423	8236	85.3	98.9	98.6	14.7	1.1	1.4
	3804	1755	2552	8171	75.3	80.3	73.4	24.7	29.7	24.6
Mean	4072	1786	24.18	8276	77.5	89.8	86.7	22.5	10.2	12.6

Association	Lbs. D.M. Per Acre - Alfalfa				Ubs. D.M. Per Acre- Grass			
	June 1	July 5	Aug 22	Total	June 1	July 5	Aug 22	Total
DuPuits + Iincoln	3761	2192	2589	8542	475	38	42	555
+ Climax	4008	2239	2747	8994	154	9	56	219
+ Frode	3372	2564	2590	8526	720	250	159	1129
Mean	3713	2332	2642	8687	450	99	86	634
Vernal + Lincoln	3173	1613	2012	6798	1240	177	268	1685
+ Climax	3412	1793	2389	7594	588	20	34	642
+ Frode	2864	1614	2096	6574	940	172	322	1434
Mean	3150	1673	2166	6989	923	123	208	1254

Association	MEDIUM CUT - JUNE 13, 1962									
	Ibs. D.M. /Acre - Alfalfa + Grass				\% Alfalfa			\% Grass		
	June 13	July 24	Aug 22	Total	June 13	July 24	Aug 22	June 13	July 24	Aug 22
DuPuits + İincoln	4866	2033	2294	9193	86.6	98.4	97.1	13.4	1.6	2.9
+ Climax	4916	2098	2262	9276	98.3	99.0	97.8	1.7	1.0	2.2
+ Frode	5321	1840	2223	9384	86.9	89.2	85.5	13.1	1.8	14.5
Mean	5035	1990	2260	9285	90.6	95.5	93.5	9.4	1.5	6.5
Vernal + Iincoln	5532	1616	1912	9060	67.8	85.8	87.9	32.2	14.2	12.1
+ Climax	4530	1591	2053	8174	93.5	98.8	95.7	6.5	1.2	4.3
+ Frode	5521	1545	1805	8871	78.8	78.2	79.3	21.2	21.8	20.7
Mean	5194	1584	1923	8701	80.0	87.6	87.6	20.0	12.4	12.4

Association	Ibs. D.M. Per Acre - Alfalfa				Lbs. D.M. Per Acre - Grass			
	Juñe 13	July 22	Aug 22	Total	June	July	Aug	Total
DuPuits + İincoln	4214	2000	2227	8447	652	33	67	752
+ Climax	4832	2077	2212	9121	84	21	50	155
+ Frode	4624	1641	1901	8166	697	199	322	1218
Mean	4557	1906	2113	8576	478	84	146	708
Vernal + Lincoln	3751	1387	1681	6819	1781	229	231	2241
+ Glimax	4236	1572	1965	7773	294	19	88	401
+ Frode	4351	1208	1431	6990	1170	337	374	1881
Mean	4113	1389	1692	7194	1082	195	231	1508 ${ }^{\text { }}$

$$
\text { LATE CUT - JULY 5, } 1962
$$

Association	Ibs. D.M./Acre, Alfalfa + Grass					\% Alfalfa			\% Crass	
	July 5	Aug. 1	Sept. 6	Total	July 5	Aug. 1	Sept. 6	July 5	Aug. 1	Sept. 6
DuPuits + Iincoln	5596	1782	2351	9729	88.8	98.0	94.8	37.2	2.0	5.2
+ Climax	4997	1483	2276	8756	96.5	100.0	97.3	3.5	0	2.7
+ Frode	5391	1670	2371	9432	90.2	95.7	92.5	9.8	4.3	7.5
Mean	5328	1645	2333	9306	91.8	97.9	94.9	8.2	2.1	5.1
Vernal + Lincoln	5749	1443	2083	9275	70.6	89.1	78.8	29.4	10.9	21.2
+ Climax	5228	1535	2083	8846	90.2	98.2	96.9	9.8	1.8	3.1
+ Frode	5453	1285	1898	8636	75.3	85.9	78.5	24.7	14.1	21.5
Mean	5477	1421	2021	8919	78.7	91.1	84.7	21.3	8.9	15.3

Association	Ibs. D.M. Per Acre - Alfalfa				Ibs. D.M. Per Acre - Grass			
	JuIy 5	Aug. 1	Sept. 6	Total	July 5	Aug.	Sept.	Total
DuPuits + İncoln	4969	1746	2229	894.4	627	36	122	785
+ Climax	4822	1483	2215	8520	175	0	61	236
+ Frode	4863	1598	2193	8654	528	72	178	778
Mean	4885	1609	2212	8706	443	36	120	599
Vernal + Iincoln	4059	1286	1641	6986	1690	157	442	2289
+ Climax	4716	1507	2018	8241	512	28	65	605
+ Frode	4106	1104	1490	6700	1371	181	408	1960
Mean	4294	1299	1716	7309	1791	122	305	1618

Title Aftermath distribution of alfalfa and trefoil varieties.
Purpose To study the relationship among the dry matter aftermath production and the aftermath distribution from Vernal, DuPuits alfalfas and Viking, Empire, and Morshansk trefoils.

Exp. No. 4783
Iocation O.A.C. B7 (north end)
Date Seeded May 15, 1961
Design Split plot with four replications
Treatments 1. Species alfalfa - DuPuits 10 lb ./acre Vernal 10 lb acre
trefoil - Empire 8 lbs./acre Viking 8 lbs./acre Morshansk 8 lbs./acre
2. Gutting Schedules

1st. Harvest (hay)
Hay removed from all varieties at medium to late bud. 2nd, 3rd, 4th Harvest

Aftermath growth curves were determined by cutting at 61 , medium bud stage, and 1/10th bloom stages of development. Curves were only determined on aftermath from preceeding bud and $1 / 10 t h$ bloom harvests.

Key to harvest schedule
Ist $I=$ Bud
2nd \& Succeeding
$1=6^{\prime \prime}$
$2=$ Bud
$3=1 /$ IOth Bloom.
3. Heights of plants in centimeters were taken weekly. Stages of development were estimated weekly on the following basis.

A - Vegetative
B - Early Bud
C - Buds Emerged
D - Late Bud

E - Early Flower
F - Full Flower
G - Late Flower
H - Early Seed

Results

(1962 Harvest)
Tables showing the dry matter yield, production per day, pounds of legume and grass (weeds) and per cent dry matter are shown for each variety. In addition graphs showing aftermath yield and height curves as well as tables for height are included.

The dry spring and summer of 1962 resulted in yields that were low. In particular the dry spell during the latter days of June and the first three weeks of July had a very marked delaying effect upon the growth of all varieties during the second aftermath recovery period. This was particularly true in the case where plots were previously harvested at the bud stage. As a result little difference in recovery time was
apparent as a result of cutting the first aftermath at bud or l/loth bloom.
The first aftermath recovery was not effectual to the same degree as the second aftermath growth and the curves appeared to be "normal growth curves".

In all cases the dry matter production curves, production per day data, and stage indicated that when the plants reach a stage between vegetative and early bud the growth slows down.

Although the very dry mid summer period influenced the second aftermath distribution of the varieties the differences in aftermath harvest time among the varieties in all the aftermath harvests was a reflection of the date of harvest of the hay crop.

Effect of Date of Hay Harvest on the Distribution and Production Of Alfalfa and Trefoil Varieties Gut at Bud Stage

Variety Date Hay Fiage Field First Aftermath Second Aftermath Third Aftermath Season

Viking		23	C	2324	June	22	B	1377	July		B	360	Aug 31	B	1735	5796
Dupuits ++		25	AB	3646		27	BC	2129		27	BC	673	31	B	1303	7751
Morshansk		28	$A B$	2333		29	BC	1445	Aug.	27	BC	1687	-	-	-	5465
Vernal		30	A+	4293	July	6	BC	2265		14	C	1705	Oct 10	A	295	8558
Empire	June	8	C	3194		19	B	940	Aug.	31	B	1315	-	-	-	5449
	May	23°	A	1947		29	C	1967	Aug.	31	B	2906	--	-	-	6814

+ Stage recorded on May 22 (8 days prior to cutting).
- One replication of Empire was cut prior to bud stage in the first hay crop.
+ An additional harvest on November 1 was made of DuPuits of 446 Ib . Total. yield for season 8192 lb .

$\begin{aligned} & \text { Treatment } \\ & \text { Cut } \\ & 12345 \\ & \hline \end{aligned}$	Date of Cut	Date of Recording Hgt. \& Stage	Stage of Plant Develop.	$\begin{aligned} & \text { Height } \\ & \text { in } \\ & \text { Cms. } \\ & \hline \end{aligned}$	Yield in Lbs. D.M./Acre					$\begin{gathered} \% \\ \text { D.M. } \end{gathered}$	Total Year
					Total	$\begin{aligned} & \text { Prodin } \\ & \text { Per Day } \end{aligned}$	Legume	Grass	Weed		
1	May 25	May 22	AB	58.00	3646		3646	0	0	20.7	
11	June 12	June 12	A	27.98	564	31.3	564	0	0	20.2	4210
12	June 27	June 25	B	49.56	2129	64.5	2129	0	0	22.4	
13	July 6	July 4	D	56.25	2613	62.2	2613	0	0	35.5	
121	July 19	July 16	A	16.92	317	14.1	317	0	0	27.3	6086
122	July 27	July 24	BC	22.50	673	22.4	673	0	0	30.1	
123	Aug. 8	Aug. 8	D	39.50	1630	38.8	1630	0	0	24.8	
131	July 26	July 24	A	17.33	332	16.6	332	0	0	23.1	6591
132	Aug. 2	July 30	B	28.38	1060	39.3	1060	0	0	21.2	7319
133	Aug. 27	Aug. 27	E	49.75	2148	41.3	2148	0	0	41.2	8407
1221	Aug. $1{ }_{4}$	Aug. 13	A	22.00	602	33.4	602	0	0	19.8	7050
1222	Aug. 31	Aug. 27	B	34.13	1303	37.2	1303	0	0	34.0	7751
1223	Oct. 10	Oct. 10	c	34.50	899	12.0	899	0	0	31.1	7347
1231	Aug. 27	Aug. 27	A	17.88	459	24.2	459	0	0	30.5	7864
1232	Oct. 10	Oct. 10	B	23.00	733	17.6	733	0	0	28.4	8138
12×22	Nov. 1	Oct. 22	A	21.75	446	7.2	446	0	0	20.2	8192

EXP. 4783/62
HEIGHTS IN CENTTMETERS - DUPUITS

Treatment No.
Date
May 22
June 5 June 12 June 12
June 18
June 25
July 4
July 9
July 16
July 24
July 30
fiug. 8
c.ug. 13

Aug. 22
Aug. 27
Sept. 3
Sept. 10
Sept. 17
Sept. 24
ost. 2
Oct. 10
Oct. 15
0ct. 22
 $\begin{array}{llllllllll}58.00 & 58.00 & 58.00 & 58.00 & 58.00 & 58.00 & 58.00 & 58.00 & 58.00 & 58.00\end{array}$ $\begin{array}{lllllllllll}10.63 & 10.63 & 10.63 & 10.63 & 10.63 & 10.63 & 10.63 & 10.63 & 10.63 & 10.63\end{array}$ $\begin{array}{llllllllll}21.98 & 21.98 & 21.98 & 21.98 & 21.98 & 21.98 & 21.98 & 21.98 & 21.98 & 21.98\end{array}$ $\begin{array}{lllllllll}35.03 & 35.03 & 35.03 & 35.03 & 35.03 & 35.03 & 35.03 & 35.03 & 35.03\end{array}$ $\begin{array}{lllllllll}49.56 & 49.56 & 49.56 & 49.56 & 49.56 & 49.56 & 49.56 & 49.56 & 49.56\end{array}$ $\begin{array}{lllllllll}5.00 & 5.00 & 5.00 & 5.00 & 5.00 & 5.00 & 56.25 & 56.25 & 56.25\end{array}$ $\begin{array}{lllllllll}10.71 & 10.71 & 10.71 & 10.71 & 10.71 & 10.71 & 5.00 & 5.00 & 5.00\end{array}$ $\begin{array}{lllllllll}16.92 & 16.92 & 16.92 & 16.92 & 16.92 & 16.92 & 8.17 & 8.17 & 8.17\end{array}$ $\begin{array}{llllllll}22.50 & 22.50 & 22.50 & 22.50 & 22.50 & 17.33 & 17.33 & 17.33\end{array}$ $\begin{array}{lllllll}5.00 & 5.00 & 5.00 & 27.38 & 27.38 & 28.38 & 28.38\end{array}$ $18.00 \quad 18.00 \quad 18.00 \quad 39.50 \quad 39.50 \quad$ 1.2.5n $\begin{array}{lllll}22.00 & 22.00 & 22.00 & 5.00 & 5.00\end{array} 45.50$ $32.50 \quad 32.50 \quad 12.88 \quad 12.88 \quad 49.75$ $\begin{array}{lllll}34.13 & 34.13 & 17.88 & 17.88 & 49.75\end{array}$
$\begin{array}{lll}5.25 & 33.50 & 22.50\end{array}$
$33.75 \quad 22.75$
$34.00 \quad 23.25$
$34.25 \quad 23.50$
$34.50 \quad 23.00$
21.25
21.75

$\begin{aligned} & \text { Treatment } \\ & \text { Cut } \\ & 12345 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Date } \\ & \text { of } \\ & \text { Cut } \\ & \hline \end{aligned}$	Date ofRecordingHgt. \& Stage	Stage of Plant Develop.	$\begin{gathered} \text { Height } \\ \text { in } \\ \text { Cms. } \\ \hline \end{gathered}$	Yield in Lbs. D.M./Acre				Weed	DM.	$\begin{aligned} & \text { Tot. Yield } \\ & \text { for } \\ & \text { Year } \\ & \hline \end{aligned}$
					Total	Prodin Per Day	Legume	Grass			
1	May 30	May 22	A	52.60	4293		4293	0	0	23.1	
11	June 18	June 18	A	22.12	580	30.5	580	0	0	19.7	4873
12	July 6	July 4	BC	44.78	2265	61.2	2265	0	0	32.2	
13	July 17	July 16	C	52.34	2842	59.2	2842	0	0	33.7	
121	Aug. 1	July 30	A	19.50	618	23.8	618	0	0	22.2	7176
122	Aug. 14	Aug. 13	C	37.05	1705	43.7	1705	0	0	23.4	
123	Aug. 31	Aug. 27	D	41.88	1944	34.7	1944	0	0	40.1	
131	Aug. 8	Aug. 8	A	28.42	817	37.1	817	0	0	18.7	7952
132	Aug. 21	Aug. 13	C	36.13	1965	56.1	1965	0	0	25.5	9100
133	Âug. 31	Aug. 27	CD	44.75	2185	48.6	2185	0	0	36.7	9320
1221	Oct. 10	Oct. 10	A	17.58	395	6.9	395	0	0	25.5	8658
1222	Oct. 10	Oct. 10	A	11.58	295	5.2	295	0	0	26.9	8558
1223	Oct. 10	Oct. 10	A	11.58	214	3.8	214	0	0	30.9	8477
1231	Oct. 10	Oct. 10	A	10.00	156	3.9	156	0	0	24.8	8658
1232	Oct. 10	Oct. 10	A	10.00	133	3.3	133	0	0	24.6	8653

Date 2 II- 2 121- 2122121222 Treatment No 212232123121232 2 131-2132- 2 133-
$\begin{array}{llllllllllll}\text { May } 22 & 52.60 & 52.60 & 52.60 & 52.60 & 52.60 & 52.60 & 52.60 & 52.60 & 52.60 & 52.60\end{array}$ $\begin{array}{lllllllllll}\text { June } 5 & 5.00 & 5.00 & 5.00 & 5.00 & 5.00 & 5.00 & 5.00 & 5.00 & 5.00 & 5.00\end{array}$ $\begin{array}{lllllllllll}\text { June } & 12 & 10.68 & 10.68 & 10.68 & 10.68 & 10.68 & 10.68 & 10.68 & 10.68 & 10.68\end{array} \quad 10.68$ $\begin{array}{llllllllllll}\text { June } 18 & 22.12 & 22.12 & 22.12 & 22.12 & 22.12 & 22.12 & 22.12 & 22.12 & 22.12 & 22.12\end{array}$ $\begin{array}{lllllllllllll}\text { June } 25 & 35.81 & 35.81 & 35.81 & 35.81 & 35.81 & 35.81 & 35.81 & 35.81 & 35.81\end{array}$ $\begin{array}{llllllllllll}\text { July } 4 & 44.78 & 44.78 & 44.78 & 44.78 & 44.78 & 44.78 & 44.78 & 44.78 & 44.78\end{array}$

July 9	5.00	5.00	5.00	5.00	5.00	5.00	47.50	47.50	47.50

July 16	6.33	6.33	6.33	6.33	6.33	6.33	52.34	52.34	52.34

| July 24 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 | 5.00 | 5.00 | 5.00 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| JuIy 30 | 19.50 | 19.50 | 19.50 | 19.50 | 19.50 | 19.50 | 8.67 | 8.67 | 8.67 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Aug. 8
Aug. 13
Aug. 22
Aug. 27
Sept. 3
Sept. 10
Sept. 17
Sept. 24
Oct. 2
Oct. 10

33.40	33.40	33.40	33.40	33.40	28.42	28.42	28.42

| 5.00 | 5.00 | 5.00 | 41.75 | 41.75 |
| :--- | :--- | :--- | :--- | :--- | 43.75

$9.00 \quad 9.00 \quad 4.00 \quad 41.88 \quad 41.88 \quad 45$
$10.92 \quad 10.92 \quad 10.92 \quad 5.00 \quad 5.00$
$11.42 \quad 11.42 \quad 11.42 \quad 5.00 \quad 5.00$
$\begin{array}{lllll}12.33 & 12.33 & 12.33 & 6.63 & 6.63\end{array}$
$\begin{array}{lllll}12.50 & 12.50 & 12.50 & 6.75 & 6.75\end{array}$
$\begin{array}{lllll}12.50 & 12.50 & 12.50 & 7.75 & 7.75\end{array}$
$11.58 \quad 11.58 \quad 11.58 \quad 10.00 \quad 10.00$

EXP. 4783		AFIERMATH GROWTH CURVES OF VIKING TREFOIL, 1961								O.A.C.	
Treatment	Date of Cut	Date of Recording Hgt. \& Stage	Stage of Plant Height in Develop. Cms.		Yield in Lbs. of D.M./acre					$\begin{gathered} \% \\ \text { D.M. } \end{gathered}$	$\begin{aligned} & \text { Total } \\ & \text { Yield } \\ & \text { For Year } \end{aligned}$
Cut						Prod'n					
12345					Total	Per Day	Legume	Grass	Weed		
1	May 23	May 22	C	28.60	2324		2132	22		17.7	
11	June 18	June 18	$A B$	20.50	702	27.0	678	30		15.3	3026
12	June 22	June 18	B	20.50	1377	45.9	1364	13		15.6	
13	June 29	June 25	BC	28.75	1976	53.4	1857	61		18.9	
121	July 17	July 16	$A B$	13.25	197	7.9	194	2		24.8	3898
122	July 19	July 16	B	13.25	360	13.3	347	10		28.7	
123	July 26	July 24	D	15.50	681	20.0	656	15		23.3	
131	July 31	July 30	CD	17.33	407	12.7	400	5		22.9	4707
132	July 31	July 30	$C D$	17.33	927	29.0	919	6		22.2	5227
133	Aug. I	July 30	CD	17.33	532	16.1	521	8		21.3	4832
1221	Aug. 16	Aug. 13	$A B$	19.92	1360	48.6	1299	40		24.8	5421
1222	Aug. 31	Aug. 27	B	27.25	1735	40.3	1599	136		30.1	5796
1223	Sept 12	Sept 10	BC	28.00	1884	34.3	1786	75		27.7	5945
1231	Aug. 21	Aug. 13	$A B$	13.38	489	18.8	470	16		20.5	4871
1232	Aug. 30	Aug. 27	AB	22.00	1011	28.9	974	37		30.9	5393

EXP. 4783	AFTERMATH GROWTH CURVES OF MORSHANSK TREFOIL TREFOIL, 1961 1962 Data.									O.A.C.	
$\begin{aligned} & \text { Treatment } \\ & \text { Cut } \\ & 12345 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Date } \\ & \text { of } \\ & \text { Cut } \end{aligned}$	Date of Recording Height \& Stage	Stage of Plant Develop.	$\begin{aligned} & \text { Height } \\ & \text { in } \\ & \text { Cms. } \end{aligned}$	Yield in Ibs. D.M./hcre					$\begin{gathered} \% \\ \text { D.M. } \\ \text { D. } \\ \hline \end{gathered}$	Total Yield For Year
					Total	$\operatorname{Prod}^{1} \mathrm{~N}$ Per Day.	Legume	Grass	Weed		
1	May 28	May 22	AB	27.00	2333		2242	91		18.3	
11	June 22	June 18	AB	13.33	64.4	25.8	625	19		15.7	2977
12	June 29	June 25	C	24.00	1445	45.2	14.4	38		18.0	
13	July 4	July 4	DE	34.25	2032	54.9	2005	18		24.1	
121	Aug. 8	Aug. 8	B	19.84	639	16.0	621	16		20.4	4417
122	Aug. 27	Aug. 27	BC	28.20	1687	28.6	1630	57		31.4	5465
123	Sept. 13	Sept. 10	C	28.25	1396	18.4	1380	16		33.6	5174
131	Aug. 2	July 30	AB	11.75	253	8.7	248	6		21.3	4618
132	Aug. 31	Aug. 27	B	32.25	1836	31.7	1836	0		32.4	6201
. 133	Sept. 13	Sept. 10	B	31.00	1702	24.0	1663	40		28.5	6067
1221		-									
1222		-									
1223		-									
1231		-									
1232		-									

Tut. No. May 22 June 5 June 12 June 18 June 25 July 4 July 9 July 16 July 24 July 30 Aug 8 Aug 13 Aug 22 Aug 27 Sept 3 Sept 10

5	11-	27.00	5.00	7.18	13.33												
5	121-	27.00	5.00	7.18	13.33	24.00	5.00	5.50	7.25	8.63	11.33	19.84					
5	1221	27.00	5.00	7.18	13.33	24.00	5.00	5.50	7.25	8.63	11.33	19.84	23.70	28.15	28.20		
5	1222	27.00	5.00	7.18	13.33	24.00	5.00	5.50	7.25	8.63	11.33	19.84	23.70	28.15	28.20		
5	1223	27.00	5.00	7.18	13.33	24.00	5.00	5.50	7.25	8.63	11.33	19.84	23.70	28.15	28.20		
5	1231	27.00	5.00	7.18	13.33	24.00	5.00	5.50	7.25	8.63	17.33	19.84	23.70	28.15	28.20	28.88	28.25
5	1232	27.00	5.00	7.18	13.33	24.00	5.00	5.50	7.25	8.63	17.33	19.84	23.70	28.15	28.20	28.88	28.25
5	131-	27.00	5.00	7.18	13.33	24.00	34.25	5.00	6.25	8.25	17.75						
5	13 ?	27.00	5.00	7.18	13.33	24.00	34.25	5.00	6.25	8.25	11.75	22.25	27.13	32.38	32.25		
5	133-	27.00	5.00	7.18	13.33	24.00	34.25	5.00	6.25	8.25	11.75	22.25	27.13	32.38	32.25	32.50	31.00

AFTERMATH GROWTH CURVES (4783) MORSHANSK TREFOIL

EXP. 4783
AFTERMATH GROWTH CURVES OF EMPIRE TREFOIL, 196.1
O.A.C. (Reps 1,3,4)

1962 Data

$\begin{aligned} & \text { Treatment } \\ & \text { Cut } \\ & 12345 \\ & \hline \end{aligned}$	Date of Cut	Date ofRecordingHeight \&Stage	$\begin{gathered} \text { Stage } \\ \text { of } \\ \text { Plant } \\ \text { Develop. } \end{gathered}$	$\begin{gathered} \text { Height } \\ \text { in } \\ \text { Cms. } \\ \hline \end{gathered}$	Yield in Ibs. D.Mo/Acre					$\begin{gathered} \% \\ D_{0} M_{0} \\ \hline \end{gathered}$	Total Yield For Year
					Total	$\begin{aligned} & \hline \text { Prod } \mathrm{In}^{\prime} \\ & \text { Per Day } \\ & \hline \end{aligned}$	Legume	Grass	Weed		
1	June 8	June 5	c	38.73	3194		2791	234		23.6	
11	July 17	July 16	$A B$	15.80	684	17.5	627	14		33.1	3878
12	July 19	July 16	B	15.80	940	22.9	839	29		35.7	
13	Aug. 7	July 30	$C D$	20.67	1740	29.0	1609	65		23.3	4934
121	Aug. 14	Aug. 13	A	14,28	470	18.1	432	15		17.1	4604
122	Aug. 31	Aug. 27	B	21.73	1315	30.6	1254	42		33.8	54.49
123	Sept. 12	Sept. 10	A	22.50	1372	24.9	1256	60		29.6	5506
131	Oct. 10	Oct. 10	A	9.33	223	3.5	187	45		25.0	5157
132	oct. 10	Oct. 10	A	9.33	873	13.6	60	39		25.8	5807
133											
1221		-									
1222		-									
1223		-									
1231		-									
1232		-									

Date $\quad 411$ - 4 121- 41221412224122341231412324131 - 4 132- 4 133-
$\begin{array}{lllllllllll}\text { May } 22 & 25.10 & 25.10 & 25.10 & 25.10 & 25.10 & 25.10 & 25.10 & 25.10 & 25.10 & 25.10\end{array}$
$\begin{array}{lllllllllll}\text { June } 5 & 38.73 & 38.73 & 38.73 & 38.73 & 38.73 & 38.73 & 38.73 & 38.73 & 38.73 & 38.73\end{array}$ $\begin{array}{lllllllllll}\text { June } 12 & 5.00 & 5.00 & 5.00 & 5.00 & 5.00 & 5.00 & 5.00 & 5.00 & 5.00 & 5.00\end{array}$ $\begin{array}{lllllllllll}\text { June } 18 & 5.00 & 5.00 & 5.00 & 5.00 & 5.00 & 5.00 & 5.00 & 5.00 & 5.00 & 5.00\end{array}$
$\begin{array}{lllllllllll}\text { June } 25 & 8.44 & 8.44 & 8.44 & 8.44 & 8.44 & 8.44 & 8.44 & 8.44 & 8.44 & 8.44\end{array}$ $\begin{array}{lllllllllll}\text { July } 4 & 11.47 & 11.47 & 11.47 & 11.47 & 11.47 & 11.47 & 11.47 & 11.47 & 11.47 & 11.47\end{array}$ $\begin{array}{lllllllllll}\text { JuIy } 9 & 14.57 & 14.57 & 14.57 & 14.57 & 14.57 & 14.57 & 1_{4.57} .57 & 14.57 & 14.57 & 14.57\end{array}$ $\begin{array}{lllllllllll}\text { July } 16 & 15.80 & 15.80 & 15.80 & 15.80 & 15.80 & 15.80 & 15.80 & 15.80 & 15.80 & 15.80\end{array}$ $\begin{array}{lllllllllll}\text { July } 24 & 5.00 & 5.00 & 5.00 & 5.00 & 5.00 & 5.00 & 14.78 & 14.78 & 14.78\end{array}$ $\begin{array}{llllllllll}\text { July } 30 & 6.95 & 5.95 & 6.95 & 6.95 & 6.95 & 6.95 & 14.33 & 14.33 & 14.33\end{array}$ Aug. 8

Aug. 13
ag. 22
Aug. 27
Sept. 3
Sept. 10
Sept. 17
Sept. 24
oct. 2
Oct. 10
$\begin{array}{lllllllll}10.61 & 10.61 & 10.61 & 10.61 & 10.61 & 10.61 & 5.67 & 5.67 & 20.67\end{array}$ $\begin{array}{lllllllll}14.28 & 14.28 & 14.28 & 14.28 & 14.28 & 14.28 & 6.00 & 6.00 & 23.33\end{array}$ $21.00 \quad 21.00 \quad 21.00 \quad 21.00 \quad 21.00 \quad 7.34 \quad 7.34 \quad 5.00$ $\begin{array}{llllllll}21.73 & 21.73 & 21.73 & 21.73 & 21.73 & 8.67 & 8.67 & 5.00\end{array}$ $\begin{array}{lllll}22.17 & 22.17 & 9.00 & 9.00 & 5.00\end{array}$ $\begin{array}{lllll}22.50 & 22.50 & 8.84 & 8.84 & 5.00\end{array}$
$9.17 \quad 9.17 \quad 5.33$
$9.34 \quad 9.34 \quad 5.33$
$9.50 \quad 9.50 \quad 5.33$
$9.33 \quad 9.33 \quad 5.33$

Progress Report
Using the In Vitro Technique
For Quality Evaluation of Crops

The materials, equipment, solutions, and procedure used in this technique are outlined in the 1961 Forage Management Progress Report of this department.

The In Vitro technique used in quality evaluation is based upon that developed at the Hurley Grassland Station and reported in Proc. Sth Inter: Grass Cong. 1960 Report. The digestibility of a sample is gauged on the decrease in dry metter rather than cellulose. Thus, chemical determinations of cellulose content on the sample prior to addition of the micro-organisms and on the residue after digestion is eliminated. However, very precise weighing of the samples is required before and after digestion using this dry matter technique.

In this laboratory, the total digestion of the sample is estimated. Digestion alone is only one factor involved in quality evaluation of crops. However, error terms involved in determining the more desirable criterion of value; the nutritive value index (relative intake x digestion) by an In Vitro technique are high.

Table 1: Calibration of Artificial Rumen With Standard Samples
Per Cent Digestible Dry matter

Period of Digestion	G 6II (O.A.G. Alfalfa)	Purdue	Macdonald Brome	Macdonald Alfalfa
	44.4	32.8	20.3	
24	57.0	47.3	43.9	36.5
36	59.9	47.2	53.2	47.0
48	63.9	52.3	50.5	51.5
$48+48$	73.4	55.7	61.0	61.1

Analysis of Variance Table
Mean Squares

Variants	df.	24	$48+48$
Runs	2	$13.60 * *$	$15.50 * *$
Substrate	2	$50.06 * *$	$47.08 * *$
R x S	4	2.52	3.12
Error	8	1.39	0.89
		1.10	0.94

Justification for acceptance of the criterion of total digestion is in the fact that the one factor restricting the use of forage as a complete livestock feed is energy. In general, forages will contain adequate protein and also sufficient minerals if the crop has been grown under an adequate and well balanced fertility program for animal nutrition.

The use of total digestion (as indicated in this case by digestible dry matter) in order to "sort out" the effect of management practices, differences among species and varieties, etc., on the energy value of crops has a very meaningful objective. When relating these data to livestock performance, the same problems and difficulties are encountered as when other energy values are used. In particular the resulting data are useful in computing rations for livestock or when animals are on a restrictive feeding program. In general, however, these data can be utilized within limits tc indicate the total quality of feed. For where botanical composition remains constant (such as in stands of pure alfalfa or grass or in mixtures where the proportion of the components remain the same), intake is related to digestibility where the digestibility values are medium to high.

Thus, two lines of research are suggested by the above. 1) The determination of the effect of agronomic practices, species and varieties on the energy content of forage and 2) the investigation into the use of In Vitro techniques for estimating total quality of crops.

The former line of research is well underway in this laboratory. The laboratory has been equipped and staffed for the evaluation of approximately 10,000 samples per year. It is essential in this field to make certain that every run estimates the In Vivo digestion. This is accomplished by using "standard samples" in every run. Standard samples such as Macdonald alfalfa and bromegrass have known In Vivo digestion ratings and are used in every run along with an O.A.C. standard alfalfa (G6l-1). The relationship between results obtained with the In Vitro technique and the In Vivo data is shown in the accompanying table.

Table 2: Relationship Between In Vitro and In Vivo Digestion

$$
\frac{\text { O.A.C., Guelph }}{\mathscr{\%} \text { D.D.M. }}
$$

Sample	In Vitro +	In Vivo
Purdue Alfalfa	55.7	55.1°
Macdonald Alfalfa	61.1	60.0
Ottawa Brome 4602-B	70.5	71.8
Ottawa Brome 449-7	62.9	58.7
Ottawa Alfalfa. 482-3B	74.1	73.1
Ottawa Alfalfa 482-2B	57.8	58.8

Although no correlations can be made between these two sets of data (limited In Vivo data) there appears to be a close relationship between In Vitro and In Vivo digestibility using this technique under our laboratory conditions. The O.A.C. alfalfa (G6I-I) has become our basic standard sample for calibration of each run, and also for research into technology of techniques and components. No In Vivo digestibility data are available for this sample. However, limited data are available concerning its animal acceptance. Intake trials using forage produced at Brampton were conducted in 1961 on sixteen samples (including G6I-1) of hay. The yield, stage, date, digestible dry matter and the In Vivo data are shown in the accompanying table (table 3). Digestion and protein values are also given for three Animal Husbandry hays that were used in a dairy cattle intake trial in 1961.

Table 3:
Sheep Hays Brampton, 1961

No.	Date of Cut	Stage	Ib. Yield	Per Cent		\% Crude Protein	$\begin{gathered} \% \\ \text { Ash. } \end{gathered}$	In Vivo	
				D.D.M.	$\begin{aligned} & \text { Water } \\ & \text { Sol. } \end{aligned}$			Intake ${ }^{\circ}$ gms!. 75	$\begin{aligned} & \text { wgt.gain } \\ & \text { per day } \end{aligned}$
Vernal Alfalfa									
G611	5-16	Vegetative	2912	75.3	36.3	20.5	12.44	80.6	+0.48
G612	5-30	Early Bud	4313	69.4	30.5	17.3	10.78	65.6	+0.39
G613	6-14	1st Flower	4851	62.2	27.7	17.4	7.90	67.0	+0.26
G614	6-27	E. Seed	4826	62.0	19.3	15.3	7.84	54.3	+0.24
Saratoga Brome									
G619	5-16	Boot	1887	79.9	31.7	14.6	9.02	85.9	+0.45
66170	5-30	Head	3597	69.8	19.1	10.9	7.71	67.7	+0.23
G6111	$6-14$	Late Flower	4959	68.6	18.7	7.7	6.32	44.0	+0.00
G6112	6-27	E. Seed	5025	58.8		5.7	5.80	49.0	+0.03
Climax Timothy									
G615	5-16	Joint	2510	78.7	25.4	16.2	9.56	77.3	+0.45
C616	5-30	Boot	4096	72.5	20.4	11.9	9.12	64.1	$+0.31$
G617	$6-14$	Head	5632	59.0	19.3	11.2	7.62	47.1	+0.00
G618	6-27	Flower	5985	54.2	18.3	8.0	6.08	33.6	-0.07
Frode Orchard									
G6113	5-16	Boot	1502	75.3	33.0	12.7	10.95	80.1	+0.56
G6114	5-30	Flower	2435	70.1	25.3	9.4	17.42	68.9	
G6115	6-14	L. Flower	3539	62.6	20.9	8.3	8.60	58.8	+0.30
G6116	6-27	Seed	3658	58.7	19.1	7.5	9.57	55.4	+0.14

Animal Husbandry Hays 1961 (Dairy Cows)

AHBSI	$6-6$	70.2	18.5	$41.1^{+}+.11$	
AHBS2	$6-27$	68.0	17.0	32.9	
AHBS3	$7-18$	59.8	12.3	21.9	-.68

[^1]In a former report mention was made of the fact that the use of Pepsin was not necessary for the estimation of digestibility in grasses but was necessary for legumes.

Table 4: Use of Pepsin in the Digestibility of Forages
Per Cent Digestible Dry Matter

Sample	Period of Digestion	Average Digestion	
	48	Four Funs ${ }^{+}$	Three Funs ${ }^{\circ}$
	$48+48$	66.1	60.9
G619	48	73.5	73.1
	$48+48$	76.0	73.1
MacBrome	48	79.3	79.9
	$48+48$	63.1	-

+ runs 23; 31, 32, and 35 period - up to June 10, 1962.
- runs 50, 62, 70 period - after October 3, 1962.

Period I. Ration for sheep chopped $\frac{3}{4}$ " to 1 ". - 75% alfalfa hay Brampton harvested 1961.

- 25% grass Brampton harvested 1961. D. D.M. 75. 3\%.

2. Ration for sheep chopped $\frac{3}{4}$ to 1". - 80% alfalfa hay O.A.C. Animal Husbandry Dept., 1961. 20% straw (small proportion of grass). D.D.M. 70. 2%.

Recent indications are that the ration used for feeding the fistulated sheep may have a bearing on the use of pepsin. Where sheep were fed a ration of approximately 75% alfalfa and 25% grass, the pepsin was not necessary for estimating digestibility of grasses. Where alfalfa was fed accompanied by little or no grass,the pepsin digestion period was required for estimating digestion of both species.

Using any In Vitro technique a variability exists between two runs using the same samples. In order to overcome this, it has been the practice of this laboratory to use two runs of the same material and average the digestibilities. However, in many cases a run x treatment interaction occurs. It was essential to determine the type of interaction that occurred. Thus three runs were made of a management study to determine the type of interaction.

Table 5:
Interaction Between Runs x Treatments

Cut	Run Number			Average
1	50.5 e	46.7 cd	52.4 d	49.9
2	67.1 a	64.3 a	70.0 こ	67.1
3	73.4 a	68.5 a	75.0 a	72.3
4	74.3 a	68.5 a	74.2 a	72.3
5	67.6 ab	62.9 ab	70.0 ab	66.8
6	64.6 b	52.3 bc	66.0 bc	61.0
7	62.8 bc	48.8 c	64.3 cd	58.6
8	56.4 cd	39.3 de	56.0 d	50.6
9	54.4 d	34.0	52.9 d	47.1
10	51.8 de	37.0	51.6 d	46.8
11	48.1 e	33.0	47.7 d	43.0
12	43.7 e	32.3 e	47.4 d	41.1
Standard	59.6	62.9	67.7	63.4
Time From Feed	14.3 hrs .	5.0 hrs.	16.0 hrs .	
pH of R.L.	7.0	7.0	7.3	

Analysis of Variance Table

Variant
Runs
Replications
Runs x Reps.
Cutting Dates
Cuts x Runs
Error B
d.f. 2

3
6
11
22
99
M.S. 1985-33** 21. $59 * *$ 0.84

1553-53前
41-96*
12-84

A run x treatment interaction was apparent. However, by the use of Duncan's Multiple Range test within each mun and a comparison of these across the runs is evident that the interaction was due to a change in magnitude (Run 52) and not in ranking of the individual treatments. These data plus others indicate that the technique is ranking the treatment in the correct order in every run, but that two runs are necessary to obtain a valid estimate of digestibility.

It is also important to know the number of replications of the field trial as well as the number of tubes per sample that should be used to estimate the digestibility. Analyses were made of material that had been processed through the In Vitro technique.

Table 6:
Analysis of Variance Table
Saratoga Mean Squares Canadian Brome

Reps. 3	23.34	13.07	
Cuts 11	450.20	345.81	$6 \mathrm{~s}^{2}+260^{2}+4 \mathrm{Ct}^{2}$
Reps. x Cuts 33	14.84	14.69	$\mathrm{ls}^{2}+2 \mathrm{l}^{2}$
Sample Error 48	2.71	3.48	
Predicted Standard Error			
for 2 samples 4 reps.	1.86	1.84	
1 sample 4 reps.	2.20	2.27	
1 sample 6 reps.	1.46	2.52	

The prediction values indicated that the use of one tube for each of four field replications would result in a very high standard error. Standard errors of the various combinations of number of tubes and replications indicated that one tube from each of six replications would result in the lowest error. However, at the present two samples of 4 replications are being used ass the error term is only slightly larger than where 1 sample is used with 6 replications and less work is involved in using this number.

Samples from many agronomic studies such as first and aftermath growth curves experiments, mixture diversification trials, strain and species comparisons are being processed in the laboratory. One of the underlying projects of all these studies is to determine that the value of the leaf stem proportions in terms of digestibility. In one study conducted at Kemptville with two varieties of trefoil, leaf and stem were separated and digestion trials were conducted. (Table 7)

Although these are preliminary studies, the data indicate that Empire stems tend to be lower in digestibility than Viking stems but that the leaves of Empire are higher in digestikiluty then the Viking stems. In addition, the digestibility of the stems gradually decrease with increasing maturity of the crop. Whereas, the leaves remain fairly constant in digestibility until seed stage is reached. This is particularly the case with Empire.

The second phase of the program concerned with quality of crops is that of attempting to obtain a method by which the overall feeding quality can be estimated with the proviso that it will eliminate much of the variability among runs. This suggests that the technique must be chemical rather than biological.

The concept of determining NVI by an In Vitro technique is based upon information that indicate a lag in early digestion period occurs with some samples and that this lag in digestion is related to intake. The lag in digestion suggests that components within the crops in question may vary and that if the above thesis is true, they differ markably in digestion; thus, "loading the gut" and reducing intake. Thus, chemical determinations of components of different species varieties and their maturity are essential.

A program was undertaken in order to achieve the above objectives. involves investigation into components of forage and their digestibility. Work is proceeding in the fractionation of the components into four broad groups:

Table 7:		TREFOIL DEVELOPMENT STUDY				KEMPIVIITE, 1961		
Gutting Date	Stage of Development	Plant Height (inches)	Yield in Ibs. DM/A.	$\text { D. } \begin{aligned} & \mathscr{O} \\ & D_{.} \\ & \text {M. } \end{aligned}$	Leaves	$\text { D. } \stackrel{\neq}{D_{0}} \mathrm{M}_{0}$	$\%$ Stems	$\text { D. } \stackrel{\neq}{D_{0}} M_{\bullet}$
Viking								
May 31	Vegetative	11.4	1245	74.1	74.9	73.7	25.1	74.5
June 8	Ist Flower	19.1	2186	67.2	59.1	66.4	40.9	68.0
June 16	Full Blossom	20.0	2987	66.9	47.5	70.8	52.5	63.1
June 23	Late Bud	24.4	3488	62.6	44.7	67.9	55.3	57.2
June 29	Pods \& F\%	28.8	3162	65.6	39.3	70.7	60.7	60.5
July 7	Late Blossom	31.3	4002	61.4	33.5	65.3	66.5	57.5
July 14	Seed	35.2	4197	56.4	29.6	60.7	70.4	52.2
Empire								
June 9	Vegetative	13.5	1045	73.9	68.0	81.5	32.0	66.4
June 16	L. Bud	19.2	2034	70.1	51.1	78.4	48.9	61.8
June 23	E. Bloom	22.5	2836	69.5	50.5	75.0	49.5	53.9
June 29	Flower	30.3	2973	68.0	43.7	81.5	56.3	54.5
July 7	E. Pod	33.7	3499	61.6	40.8	76.1	59.2	47.1
July 14	M. Pod	37.2	3359	61.9	31.5	73.2	68.5	50.5
July 21	Seeds	38.8	3027	57.3	23.1	65.8	76.9	48.9

1) water soluble material, 2) material made soluble by cellulase, 3) pepsin, and 4) residue. These studies are not completed but the fractionation ias been going on using early and late cut alfalfa and grass. Techniques have been developed to look at some of the components within each grouping.

Table 8: Effect of Buffer and Distilled Water on Per Cent Solubility of. Alfalfa and Bromegrass

- Distilled water pH 5.9
+ Buffer - Mon + di basic sodium phosphate pH 5.7.

Alfalfa cut either at an early or late stage contains a higher proportion of water soluble material than grasses. The buffer (Mono basic sodium jhosphate) at a pH of 5.7 results in comparable results to those of distilled water.

Two sources of cellulase entymes are available: an indnstrial and a purified type. Neither of these are refined to a degree that they will remove only ceilulose.

Sabje 9:
Effect of Industrial vs. Purified Cellulase

	Buffer		Industrial ${ }^{\circ}$		$\text { Purified }{ }^{+}$	
Time (hrs.)	24	48	24	48	24	48
Alfalfa (G6II)	36.4	36.0	38.2	40.5	47.9	52.2

- conc. industrial 500 units or 125 mgms/tube.
+ conc. purified $100 \mathrm{mgms} /$ tube.

These two cellulase enzymes were evaluated and the data showed that the so-called purified cellulase resulted in higher solubility, of the components. Studies on the quantity of enzymes were also made. The amounts shown in Table 9 ngeared to be the maximum values obtainable.

Determination of six carbon sugars were made on the extracts after rea'ments with buffer and buffer plus cellulase have been completed using the anthrone technique.

Table 10: Effect of Time on Disappearance of Soluble Sugars

Buffer	10.8	27.9	27.8	
Buffer + Ce11.	15.6	47.3	10.1	51.0

It was found that the per cent sugar decreased with increasing times of digestion with early cut alfalfa, but not so with early cut bromegrass. In addition, the cellulase was instrmental in releasing additional sugars. Thus the need was for a substance to stop the further breakdown of these sugars if the quantities were to be measured and identifications made. Toluane, an anticeptic was used.

Table 11:
Effect of Toluene on the Soluble. Carbohydrates

	Periods of Digestion (Hrs.)					
\vdots	6	12	24	36	48	96
Buffer + Toluene	$9.6+$	9.3	10.0	9.6	9.6	8.9
Buffer + O Toluene	9.8	2.6	1.9	1.6	1.1	1.1
Cellulase + Toluene	12.6	15.0	15.7	16.1	18.8	17.1
" \quad + Toluene 312.0	2.8	2.9	2.6	2.7	2.8	

+ \% of dry weight (6 carbon sugars.)

It was found by using Toluene that these sugars could be prevented from breaking down and thus be measured by the anthrone technique. Use of Toluene with buffer or buffer plus cellulase media does not influence total digestion of the samples. However, where Toluene is used on Rumen liquor the digestibility is somewhat different. (Table 12)

Table 12: Effect of Toluene and Actidione on the Digestibility of Forages

Co2	Rumen İquor				
Toluene	Actidione	Co2	Buffer Toluene	Aotidione	
50.6	53.0	48.3	41.5	43.9	42.0
57.3	40.0	53.5	35.0	33.8	35.1

In addition to Toluene, actidione (an antibiotic) was used to fulfill the same purpose. However, no sugar analyses have been completed as yet, when actidione was used.

Rumen Liquor digestion values and those of the solu bility of components using buffer cellulase and pepsin were obtained in a number of trials involving early and late cut alfalfa and bromegrass.

Forage Samples	R.I. + Pepsin	Buffer	Cellulese	Buffer Cellu + Pepsin
Alfalfa G611	72.7	43.2	54.5	70.5
G614	58.4	26.1	37.6	47.4
Brome G619	81.5	33.9	51.0	64.1
G6112	59.5	25.8	28.9	37.9

Data from one of those trials are shown in Table 13. The technique of using buffer plus cellulase plus pepsin approximated the digestibinity of rumen liquor only in early cut alfalfa. In late cut alfalfa and early and late cut bromegrass the values were considerably lower than the rumen liquor digestion.

This suggested that the residue remaining after the removal of water soluable, digestible cellulose and protein material contained chemical components which are present to a greaterextent in early cut brome than in alfalfa and that the proportion of the components increase with age of the plant.

In order to determine the components of the residue five and ten per cent KOH and $5 \% \mathrm{~K} 2 \mathrm{CO}$ solutions were used to remove the non polyuronic hemicelluloses and polyuronic hemicelluloses respectively.

Table 14: Influence of Potassium Salts on Removel of Hemicolluloses

	Cellulase Alone	Cellulase $5 \% \mathrm{KOH}$	Cellulase 10\% KOH	48 Hours Gellulase $5 \% \mathrm{~K}_{2} \mathrm{Co}_{3}$
Alfalfa G611 (early)	56.3	74.3	74.0	63.6
G614 (late)	38.1	59.7	58.2	46.9
Brome G619 (early)	52.6	79.2	79.7	60.9
G6112 (late)	34.5	61.0	62.0	41.6

It would appear that the major component in the residue as indicated by the material removed by the KOH is of the non polyuronic type (glactans, pentasans, etc.) The proportion of polyuronic cellulases appears to be somewhat smaller. The use of $10 \% \mathrm{KOH}$ solutions did not remove any more material than the 5%. It is also interesting to note that the use of cellulase followed by 8 hours of $5 \% \mathrm{KOH}$ resulted in soluability values that are very similar to the total digestion as obtained from rumen liquor. (Refer to the previous table.)

Using the standard samples this technique was compared to the Rumen Iiquor technique. Data are as yet not completely processed; however, indications are that this may be a technique that could be used to replace the rumen liquor. Additional work is required to perfect the method.

Table 15:	Com	$f \mathrm{P}$	uor					
Sample		Rumen liguor			Cellulase +58 KOH			Ave.
	85	87	89	Ave.	85	8.	89	
Mac. Alfalfa	57.9	60.7	60.6	59.8	56.4	60.0	61.8	59.4
Mac Brome	58.4	60.9	59.6	59.6	58.4	58.6	59.2	58.7
Purdue Alfalfa	55.2	58.2	56.9	56.8	62.4	60.1	57.6	60.1
O.A.C. alfalfa	75.5	77.4	76.5	76.5	71.3	71.0	70.0	70.8

I. Effect of Seeding Rates on Westerwolth Ryegrass - 1962 (Test 228)

Most of the European data pertaining to the use of Westerwolth ryegrass has indicated the use of high seeding rates from 25 to 45 pounds per acre. In previous work at Guelph with Westerwolth ryegrass 15 pounds per acre has been the seeding rate used. The test was conducted to determine if any advantage might be achieved from the use of higher seeding rates.

This test was seeded by hand in a broadcast planting on range $D-16$ on April 30, 1962. Plot size was 5 ft . $\mathrm{x} 16 \frac{1}{2} \mathrm{Et}$. and the design used was a splitplot with the main plots including a hay management and a pasturemanagement. Under the hay management the material was clipped after the grass showed considerable heading over the plot. The pasture plots were harvasted when 10 to 12 inches of growth was present or prior to heading of the grass. Seeding rates of 10, 15, 20, 25 and 30 pounds per acre made up the sub-plots. The tetraploid C.B. Westerwolth variety was used in the test.

Prior to seeding 75 pounds of nitrogen was applied to the test site and during the life of the trial 50 pounds of nitrogen was applied to the whole test after the hay cuts were made. Although moisture was definitely limited on the trial it was not possible to irrigate the test. Therefore, the results should be a good indication of the potential of Westerwolth ryegrass in a dry season when no supplementary water is applied.

The yields achieved in 1962 from Westerwolth ryegrass are close to the minimum acceptable level for an annual grass crop. In comparison to alfalfa or an alfalfa-grass mixture the yield is relatively low. The hay management outyielded the pasture management by almost one ton of dry matter. No differential response to seeding rates occurred under the two management systems.

Yields were the same for all seeding rates used in the experiment except in the first cut and season total. The lowest seed rate (10 pounds per acre) was lower yielding than the other rates used. There was no advantage seeding more than 15 pounds per acre. The ten pound seeding rate was satisfactory for later cuts under the hay management.

Stand counts made May 29 definitely show a lower number of plants per square foot for the 10 and 15 pound rate. An explanation of the greater yield obtained from the 15 pound rate over the 10 pound rate even though stand counts indicate the same number of plants per square foot cannot be offered.

EFFECT OF SEEDING RATES ON YIELD OF UESTERTOLTH RYEGRASS (TETRAPLOID C.B.) - 1962 (TEST 228)

Yield in lbs./acre of dry matter

Seeding Rates	Cut 1	Cut 2	Cut 3	Cut 4	Cut 5	Cut 6	Seasonal Total

PASTURE MANAGEMENT
Jun. 20 Ju1. 12 Aug. 8 Sept. 5 Oct. 2 Nov. 5

10 lbs/acre	692	854	1360	452	314	577	4250
15	726	920	1483	560	406	571	4666
20	632	866	1389	555	467	588	4498
25	962	950	1382	529	431	584	4837
30	996	898	1391	507	462	524	4828
Mean	802	898	1401	521	415	579	4616

HAY MANAGEMENT
Ju1. 12 Aug. 22 Nov. 5

$10 \mathrm{lbs} / \mathrm{acre}$	2067	2459	1551				6076
15	2084	2491	1639				6215
20	2200	2518	1612				6330
25	2113	2549	1627				6290
30	2276	2480	1620				6377
Mean	2148	2500	1610				6256
Pasture + Hay Mean	1475	1699	1506				5437
Management . 05	443	166	N.S.	----	----	----	867
. 01	813	304	N.S.			----	1591
Rates . 05	141	N.S.	N.S.	N.S.	N.S.	N.S.	242
. 01	191	N.S.	N.S.	N.S.	N.S.	N.S.	328
Rates x Man. . 05	N.S.	N.S.	N.S.	----	-..-	----	N.S.
. 01	N.S.	N.S.	N.S.	----	----	----	N.S.
C.v. (\%)	9.2	9.7	4.5	14.3	19.5	8.9	4.3

EFFECT OF SEEDING RATES ON STAND OF WESTERWOLTH RYEGRASS - 1962 (TEST 228)
Rates \quad Stand count - plants/sg.ft. - May 29

10	9.2
15	9.2
20	12.2
25	16.2
30	21.3
L.S.D. @. .05	
@.01	2.1
C.V. (\%)	2.9

II. Effect of Management and Cutting Height on Yield of Westerwolth and Italian Ryegrass - 1962 (Test 229)

This test was conducted to determine the effect, if any, of cutting height under the two management systems, pasture and hay, on Westerwolth and Italian ryegrass. Information obtained from the test would be useful in specifying suitable managements for maximum recovery growth.

The methods and fertilization used in test 228 were repeated in test 229. The cutting heights used were $1^{\prime \prime}, 2^{\prime \prime}$ and $4^{\prime \prime}$ above ground level. Tetraploid CB Westerwolth and common Italian ryegrass (probably Washington common) were the varieties used in the test. With the hay management each cut was made when most of the material was headed out. With the pasture management each cut was made prior to heading. At the last cut, November 6 , all plots were cut at the one inch height.

The anly important interaction observed in the test was between species and management in the first cut and total season yield. In the first cut, the Westerwolth variety yielded less relative to the Italian variety with the hay management than with the pasture management. In the season yield, Westerwolth yielded more than Italian under pasture management while the relative yields of the varieties were reversed under the hay management. This indicates that Westerwolth is slightly superior to Italian ryegrass as a pasture species.

In regard to cutting height the one inch height was superior to the other heights in cut 1 while in the final cut the four-inch height was superior. Both of these conditions would be expected on the basis of the methods used. In the other cuts the one inch cutting height appeared slightly higher-yielding than the other cutting heights. Over the season the one inch cutting height yielded the most. There was some indication that the one inch height was causing some harm to the stand or recovery growth after the fourth cut under pasture managenent.

The yields of these varieties were again approximately one ton greater under hay management than under pasture management.

The plant height data indicate that growth was slightly faster at the one inch cutting height than at the other heights under the pasture management. Under the hay management growth seemed to progress at about the same rate for all cutting heights.

Additional observations were made on rate of recovery growth, location and type of recovery growth but they have not been sumarized at this time.

Dry matter yields in pounds per acre

Height of Cut	Variety	Cut 1	Cut 2	Cut 3	Cut 4	Cut 5	Cut 6	$\begin{aligned} & \text { Seasonal } \\ & \text { Total } \end{aligned}$
		PASTURE MANAGEMENT						
		Jun. 20	Jul. 12	Aug. 8	Sept. 5	Oct. 2	Nov. 6	
1"	Westerwolth	1177	1425	1649	652	455	326	5684
	Italian	1379	1263	1387	548	482	201	5260
2"	Westerwolth	883	1064	1497	558	470	567	5039
	Italian	887	1090	1187	598	462	663	4888
4"	Westerwolth	555	1048	1389	598	635	993	5218
	Italian	557	1017	1121	494	710	1066	4963
	Means 1"	1278	1344	1518	600	468	263	5472
	2"	885	1077	1342	578	466	615	4964
	4"	555	1032	1255	545	672	1029	5091
	Westerwolth	872	1179	1512	603	520	629	5314
	Italian	941	1123	1232	547	551	643	5037
	Pasture Mean	906	1151	1372	575	536	636	5176

effect of management and cutting hiefgis on plant height of westerwolth and ITALIAN RYEGRASS - 1962 (TEST 229)

Plant Height (in inches)

Cutting Heights	July 12	July 20	July 26	Aug. 8	Aug. 15	Aug. 22	Aug. 29	Sept. 4	Oct. 2
		Pasture management							
1 " Westerwolth	17.0	5.1	7.4	20.5	6.2	8.4	11.3	13.7	9.5
Italian	15.0	3.3	4.6	15.5	5.1	6.7	6.7	10.1	8.0
2" Westerwolth	20.5	7.1	8.6	22.4	7.2	10.0	13.2	14.6	11.6
Italian	17.7	4.6	5.6	16.1	6.0	7.7	9.4	11.3	9.4
$4^{\prime \prime}$ Westerwolth	21.0	8.1	10.2	23.6	9.4	13.4	15.8	18.5	14.3
Italian	17.5	6.1	6.7	17.1	8.2	10.3	12.5	15.1	12.2
Means 1"	16.0	4.2	6.0	18.0	5.7	7.5	9.0	11.9	8.8
2"	19.1	5.9	7.1	19.2	6.6	8.8	11.3	12.9	10.5
Westerwolth	19.5	6.8	8.7	22.1	7.6	10.6	13.5	15.6	11.8
Italian	16.7	4.7	5.6	16.2	6.4	8.2	9.6	12.2	9.9
Pasture Mean	18.1	5.7	7.2	19.2	7.0	9.4	11.5	13.9	10.9
		hay management							
1 " Westerwolth	29.2	5.8	8.2	19.7	27.0	30.1	5.1	6.7	12.1
Italian	29.7	4.1	5.9	14.9	20.3	24.5	4.6	5.7	8.7
2" Westerwolth	29.0	7.5	9.1	22.2	26.7	30.9	6.4	7.2	13.0
Italian	31.5	6.3	6.4	15.8	20.1	26.0	5.6	6.5	10.9
4" Nesterwolth	29.5	8.5	11.1	22.5	27.8	31.9	8.0	8.7	15.0
Italian	29.2	6.7	7.7	18.7	22.2	28.0	7.4	8.2	13.1
Means 1"	29.5	5.0	7.1	17.3	23.7	27.3	4.8	6.2	10.4
2 "	30.2	6.9	7.8	19.0	23.4	28.5	6.0	6.9	12.0
4"	29.4	7.6	9.4	20.6	25.0	30.0	6.9	8.5	14.1
Nesterwolth	29.2	7.3	14.2	21.5	24.0	31.0	6.5	7.6	13.4
Italian	30.2	5.8	10.0	16.5	27.2	26.2	5.9	6.8	10.9
Hay Mean	29.7	6.5	8.1	20.6	20.9	28.6	6.2	7.2	12.2
Mean Pasture + Hay	24.0	6.1	7.6	19.1	15.5	19.0	8.8	10.5	11.5

III. Yield of Seed of Three Annual Grasses - 1962 (Test 230)

This small test which included Westerwolth (Tetraploid C.B.) and Italian (common) ryegrass and rescuegrass (Georgia Selection) was used to determine the potential seed yield of the three grasses.

The test was seeded by hand in broadcast plantings on range D-16 on April 30, 1962. Four replicates were seeded of a randomized complete block design. Plot size was $5^{\prime} \times 16 \frac{1}{2}$ ' of which $3^{\prime \prime} \times 12$ was harvested for seed yield. No supplemental water was applied and the test suffered some from drought.

The rescuegrass stand was very poor and was considered to be only about $\frac{1}{4}$ of a good stand. The stand of Westerwolth was about half that of Italian ryegrass; however, it appeared to be a satisfactory stand. The seed yield data presented can only be considered as a rough index of potential importance. The surprising feature is the high yield of rescuegrass seed which was obtained from such a poor stand. In the case of the ryegrass varieties, the yields would have to be two to three times as large before seed production would be profitable.

YIELD OF SEED OF THREE ANNUAL GRASSES - 1962 (TEST 230)

Yield (lbs./acre)
Westerwolth
Italian ryegrass
Rescuegrass
L.S.D. © . 05
@ . 01
C.v. (\%)

Stand (May 30)
10.5
22.5
5.5
IV. Growth Curve Study on Italian Ryegrass - 1962 (Test 231)

This test was set up to determine the yield response curve of Italian and Weaterwolth ryegrass. However, the Westerwolth ryegrass did not establish well due to poor seeding. It is essential when seeding Westerwolth ryegrass to use a seeddrill with an agitator because of the small awns on the Westerwolth. Some information was obtained from the Westerwolth ryegrass but is not as good as that for the Italian ryegrass. The results for the two types of ryegrass are reported separately. Results for the Italian ryegrass are a mean of six replicates while only three replicates are meaned for the Westerwolth ryegrass.

A split plot design was used for the Italian ryegrass wherein the aftermath was harvested as pasture in one case while in the other was harvested as hay. In the case of Westerwolth ryegrass the aftermath was harvested at a pasture stage of growth. The pasture management consisted of harvesting just prior to heading while the hay management was harvested after most of the plants were headed.

The test was planted April 30, and the first harvest was made June 13, or six weeks after seeding. The remaining seven initial harvests were made at weekly intervals. The aftermath harvests were made according to their stage of growth and, in most cases, this meant weekly harvests. A final harvest was made on all plots on November 5.

Growth was affected by poor moisture conditions. This is indicated by the percent dry matter data presented for the initial harvest. No supplemental irrigation was applied to the test. Prior to planting 75 pounds of nitrogen per acre was applied to the test area ($\mathrm{D}-16$) and an additional 50 pounds of nitrogen per acre was applied on all plots prior to and including the fourth initial cut. Thereafter each plot cut initially was supplied with nitrogen at the above rate.

Both species were headed at the time of the fourth cut and this would appear to be the best time to cut for quality material. However, maximum yield was not obtained until the sixth cut. The Westerwolth appeared of better quality at this later cut than the Italian ryegrass. This material will be analyzed for percent digestibility in the in vitro laboratory.

Additional information was obtained on location and type of recovery growth, rate of recovery growth, development of the two species, etc. These data have not been surmarized at this time and are not available for inclusion in the report.

GROWTH CURVE STUDY ON ITALIAN RYEGRASS - 1962 (TEST 231)

Yield in pounds of dry matter per acre

AFTERMATH HAY MANAGEMENT

Heights of grass in inches

Growth
Stages Jun. 15 Jun. 25 Jun. 29 Jul. 4 Jul. 11 Jul. 18 Jul. 25 Aug. 1 Aug. 8 Aug. 15 Aug. 22 Aug. 29 Sept. 4 Sep. 19

pasture

1	9.8	$12.5 *$	13.2	17.2	22.1	7.1	8.0	12.3	16.9	7.1	8.3	8.8	11.1	7.3
2	10.6	$8.4 *$	9.1	11.2	14.1	18.1	6.2	9.3	13.9	6.7	8.4	9.9	12.4	7.1
3	10.9	19.3	4.1	7.7	8.3	10.1	13.4	7.2	11.0	14.4	6.5	7.6	8.5	12.9
4	10.7	18.9	22.6	28.6	5.5	7.4	8.3	12.1	7.2	9.7	12.6	5.2	5.9	11.6
5	10.2	19.0	22.9	28.4	30.7	8.2	8.3	11.6	16.8	7.1	8.1	9.7	12.0	16.4
6	10.6	19.6	23.6	29.4	31.1	31.1	7.5	10.1	13.6	17.6	6.7	7.3	7.4	10.9
7	10.1	19.0	23.2	29.2	31.7	32.1	32.2	8.2	11.0	13.7	18.2	5.8	6.6	9.3
8	10.3	18.8	23.0	29.2	30.3	30.2	30.3	31.0	8.7	11.7	14.2	6.0	6.8	9.0
Mean	10.4	16.9	17.7	22.6	21.7	18.0	14.3	12.7	12.4	11.0	10.4	7.5	8.9	10.5

HAY

1	9.6	12.3*	13.9	17.0	22.3	24.9	7.1	9.6	13.3	18.3	23.3	5.6	6.1	8.9
2	11.0	8.5*	9.5	11.9	14.1	20.8	23.5	7.5	10.8	13.4	17.5	22.4	5.1	8.5
3	10.7	19.4	4.5	7.8	8.3	9.2	12.9	17.9	8.6	9.7	12.2	17.6	18.8	8.9
4	10.9	19.1	24.6	29.2	5.7	7.9	8.7	13.2	19.6	6.6	8.2	8.7	11.5	14.5
5	11.1	18.6	23.4	29.1	30.3	7.7	11.8	11.5	16.6	21.7	6.9	6.9	7.6	10.1
6	10.9	19.4	24.1	28.8	30.5	30.3	6.9	9.7	13.9	18.3	21.7	5.4	6.3	8.5
7	10.3	19.4	23.0	28.2	29.7	30.2	30.8	8.4	10.6	13.6	17.7	21.0	5.4	10.3
8	10.9	19.6	22.9	28.8	31.2	26.9	31.7	31.2	9.4	12.5	15.8	19.2	22.0	9.0
Mean	10.7	17.0	18.2	22.6	21.5	19.7	16.7	13.6	12.8	14.3	15.4	13.4	10.3	9.8
$\begin{aligned} & \text { Hay + } \\ & \text { Pasture } \end{aligned}$														
Mean	10.5	17.0	18.0	22.6	21.6	18.9	15.5	13.2	12.6	12.6	12.9	10.4	9.6	10.2

[^2]Yields in pounds of dry matter per acre

* Anthesis occurred

GROWIH CURVE STUDY ON WESTERWOLTH RYEGRASS - 1962 (TEST 231)
Height of grass in inches

Growth Stages	Jun. 25	Jun. 29	Jul. 4	Jul. 11	Jul. 18	Jul. 25	Aug. 1	Aug. 8	Aug. 15	L.ug. 22	Aug. 29	Sept. 4	Se. 319
1	16.1	15.0	19.7	26.0	9.2	12.1	19.1	25.3	7.8	10.7	14.1	6.1	1).7
2	11.1	11.7	14.3	18.3	25.0	7.8	13.9	22.1	6.8	10.2	13.7	16.1	7.1
3		4.0	10.0	11.7	17.8	23.7	10.0	13.9	$19: 3$	6.8	9.4	10.6	17.5
4				7.7	12.4	16.0	23.8	10.9	13.1	17.6	6.6	9.3	12.0
5					8.2	11.4	17.6	25.7	8.3	11.5	13.7	6.3	11.5
6						8.5	14.1	24.2	7.5	10.2	13.0	16.7	8.9
7							9.8	14.8	21.0	7.2	9.9	11.0	20.0
8								9.8	14.9	20.3	6.0	7.9	11.5
Mean	13.6	10.2	14.7	15.9	14.5	13.3	15.5	18.3	12.3	11.8	10.8	10.5	12.4

Growth StageItallan Ryegrass
Westerwolth Ryegrass115.414.1212.612.3

$$
12.0
$$

$$
4
$$

$$
19.5
$$

$$
14.5
$$

5
30.225.8

6

36.5

29.5
7*
26.2
22.9
8*
26.0
21.4

* Lower moisture due partially to recovery growth and rainfall which occurred at that time.
alternate row seeding of dupuits alfalfa and westerwolit ryegrass

alternat row

Treatment	\% D.M. at Harvest			Yield of Mixture lbs. D.M./acre		
	Cut 1	Cut 2	Average	Cut 1	Cut 2	Total
0 Nitrogen	29.6	24.2	26.8	4007	2550	6557
25 N*	26.9	25.8	26.4	3245	2885	6130
$50 \mathrm{~N}^{+}$	25.4	24.4	24.8	3.46	2997	6143
Harvesting date	July 10	Aug. 24		July 10	Aug. 24	
* 2 applications - total 50 lbs. N						
+ 2 applications	total 100	bs. N				

YIELD OF ALFALFA COMPONENT				
Treatment	$\underline{\text { 1st Cut }}$	$\underline{2 n d}$ Cut	Total	
0	1670	1433	3103	
25	1513	1389	2902	
50	1355	1672	3027	

Note: 3re cut taken on October 12 - Observation cut only. Yield average for each treatment slightly over 1300 lbs.

Planted: April 27
Fertility: High
Seeding Rate: Alfalfa-8 lbs./acre; Westerwolth - 15 lbs./acre

OAT LODGING AND FORAGE ESTABLTSHMENT
1961 - Test 153 1962-Test 161

Objectives

To study the effect of time and degree of lodging of an oat companion crop upon the establishment and development of Vernal alfalfa and lincoln bromegrass.

Design Split-plot with 6 replications
Main plots - companion crop treatments
Sub plots - forage species
Seeded plot size - 8 ft. x 13 ft .
Lodged plot size - $5 \mathrm{ft} . \times 10 \mathrm{ft}$.

Procedure

1. Garry oats seeded at $2 \frac{1}{2}$ bushels per acre under high fertility
2. Underseeded with pure stands of Vernal - 10 lbs . and Iincoln - 12 lbs .
3. Oats lodged after allowing to grow through fence wire stretched over a frame ('lxl 1), the latter held 10 inches off the soil.
4. Treatments, a combination of lodging at heading and at the dough stage to 60° and 90°.

Data collected on:

1. Oat density - number of stems per foot of row.
2. Length of straw and yield of straw.
3. Oat yield and quality.
4. Iight intensity readings at seedling level when lodged and at oat harvest.
5. Stand counts before lodging, oat harvest, late fall.
6. Height, weight, no tillers, at lodging time, oat harvest, and late fall (10 seedling sample per plot).
7. First crop hay or plant yield at hay stage.

Observations

Test 153 in 1961 was seriously damaged by birds just as the oats were emerging and consequently, the data in the 1961 report is not too reliable. The test was carried through to screen the techniques suggested in the outline.
2. Test 161 in 1962, the oats did not germinate as well as expected and the crop was rather thin. The land, however, was very fertile, as the straw yields indicate and a heavy growthy oat crop was obtained. On July 12 , between the first and second lodging date, a severe storm lodged all the oats. The oats were so twistod that those growing through the wire frames in the unlodged plots could not be put upright by raising the frame. In the severe lodging treatment only on July 27, the oats were put flatter.
3. No analysis of data completed in 1962.

```
TEST 161 - OAT LODGING (1962)
```

Seeded: April 30, 1962 Location E-16

Oats Harvested: Aug. 17, 1962

Lodging Treatment	Oat Straw $\frac{\text { Oat Yield and Quality }}{}$				Establishment					
					Per cent Hull	Plants/Square Foot			\% Iight	
	$\begin{aligned} & \text { Yield } \\ & \text { Lbs./A } \end{aligned}$	$\begin{aligned} & \text { Yield } \\ & \text { Lbs./A } \end{aligned}$	Weight Lbs/Bus.	Seed Wgt Gns.		Vernai	IVincoln	Vernal	Iincoln	$\begin{aligned} & \text { Interception } \\ & \text { Aug } 15 \end{aligned}$
Early, moderate	2260	5149	31.5	26.5	31.0	20.9	11.0	23.6	12.9	76
Early, severe	2036	5149	31.5	25.2	31.0	21.9	11.3	19.9	10.7	78
*										
Late, moderate	1880	5112	30.0	25.0	31.4	19.2	9.2	19.4	10.5	82
Late, severe	2036	5280	31.2	24.4	32.6	23.9	11.9	17.1	10.4	81
No lodging	1924	4919	30.7	22.8	32.0	18.0	10.1	15.3	13.7	72
No Companion						24.3	14.1	25.0	17.1	

* Early - 7/5/62: Late - 7/27/62 - Lodged

TEST 161 - OAT LODGING (1962)

Lodging Treatment
Early, Early, Iate, Iate No No Moderate Severe Moderate Severe Lodging: Companion
$\frac{\text { July } 10,1962}{\text { Inncoln Brome }}$
Height
Stools
Dry Weight
Vernal Alfalfa
Height
Stools
Dry Weight
JuIy 27, 1962
Incoln Brome

Height		37.4	35.0
Stools	1.2	1.1	
Dry Weight	1.3	1.0	
Vernal Alfalfa			
Height		30.7	37.9
Stools	1.7	1.4	
Dry Weight	1.4	1.9	

August 17, 1962
Gincoln Brome
Height
Stools
Dry Weight
Vernal Alfalfa
Height
Stools
Dry Weight
October 18, 1962

Incoln Erome	
Height	18.8
Stools	10.3
Dry Weight	8.8
Vernal Alfalfa	
Height	17.1
Stools	3.2
Dry Weight	5.5

31.8
2.9
1.8
29.5
1.9
2.0

18.8
10.3
8.8
17.1
3.2
5.5
34.6
2.9
1.9
36.4
2.9
1.9
35.1
2.9
2.2
35.7
2.5
1.5
32.8
2.5
34.1
1.8
1.7

38.0	57.0
1.1	4.5
1.3	27.1
41.4	52.0
1.7	1.9
2.2	21.7

32.6	50.6
1.1	2.0
2.0	14.8

Seeded:
May 4, 1962
Main Stems Per
Foot of Row

IEST 163 - BARIEY VARIETY AND ESTABLISHMENT - 1962 Underseeded with Vernal and Iincoln

10 Plant Samples
VARTETY
York Herta Parkland Mix. Grain Garry No Companion
19.1
21.4
20.9
18.7
19.2

汧stablishment Spring
$\frac{\text { Tincoln }}{\text { Vernal }}$
Fall

Iincoln
Vernal
15
24
11
11
14
27
11
27
22
18
27
40

June 20, 1962
Tincoln Brome
Height

Stools
Vernal Alfalfa
Height
Stools
July 17, 1962

Lincoln Brome						
Height	23.7	20.7	22.3	21.8	21.2	54.3
Stools	1.0	1.0	1.0	1.0	1.0	3.7
Vernal Alfalfa						
Height	8.5	9.3	8.4	9.9	1.4 .3	33.4
Stools	1.0	1.0	1.1	1.1	1.1	1.6

August 15, 1962
Iincoln Brome
Height
Stools
21.5
18.3
18.7
24.8
2.1
27.0
57.9

Vernal Alfalfa
Height
11.1
9.7
11.3
1.7
10.8
13.6
33.9

Stools
1.4
1.5
1.4
1.7
2.3

* Spring -plants per square foot; Fall - rated 1-10; I-no plants; 5 - medium; 10 - excellent.

In previous studies, barley was found to severely reduce the establishment of bromegrass and also severely reduce the vigor of alfalfa. This small replicated test was seeded to observe any differences among three barley varieties and mixed grain.

1. The test established well but lodged severely in mid July.
2. Some data were collooted to learn if differences still occurred.
3. The lodging factor makes the test data unreliable.

TEST 165 RATE AND METHOD OF SEEDING RAPE - 1962

In 1962, as in other years, row seedings of rape were decidely superior in yield to the broadcast method at all rates of seeding used.

The Yield advantage of row seedings well compensates for the one cultivation which has been necessary to keep the crop clean.

Broadcast plantings are usually weedy, particularly at the lighter seeding rates.

Seeded
July 12

TEST - RATE AND METHOD OF SEEDING RAPE (1962)

Harvested November 5

Method	Per cent	Green	Dry Matter	Height	Diameter	25 Plant	Per
and	Dry	Yield	Yield	in	of Stems	Dry Wgt.	Cent
Rate	Matter	Tons/Acre	Tons/Acre	Cms.	in Cms.	in Gas.	Leaf

Rows

$\frac{1}{2} \#$	13.9	38.2	5.30	78	1.6	521	43.0
$1 \#$	12.8	42.3	5.19	77	1.5	502	45.5
$1 \frac{1}{2} \#$	12.6	37.2	4.67	79	1.5	488	43.9
$2 \#$	11.4	41.1	4.63	81	1.4	467	43.3
Ave.	12.7	39.7	4.95	79	1.5	495	43.9

roadcast

$2 \#$	11.4	25.0	2.68	81	1.6	584	43.3
$4 \#$	11.5	25.2	2.92	82	1.4	452	$43:-$
$6 \#$	11.2	26.1	2.89	78	1.2	351	44.2
Ave.	11.4	25.4	2.83	80	1.4	4.62	43.5

RATE OF SEEDING RAPE (AVERAGE OF 1959, 1961, and 1962 CROPS)

Method and Rate	Per Cent Dry Matter	Green Yield Tons/Acre	Dry Matter Yield Tons/Acre	Weight in Cms.	Diameter of stems in Cms.	25 Plant Dry Wgt. in gms.	Per Cent Leaf
Rows							
$\frac{1}{2} \#$	11.5	27.7	3.32	90	1.6	659	36.7
I \#	11.2	29.4	3.32	88	1.5	610	38.5
11 $\#$	11.2	26.9	3.07	91	1.5	549	36.5
2 \#	10.9	28.5	3.13	91	1.4	472	35.6

Broadcast

$2 \#$	11.7	18.1	1.95	92	1.4	511	34.5
$4 \#$	11.4	18.2	2.10	89	1.3	371	33.9
$6 \#$	11.8	18.1	2.11	86	1.1	294	34.1

* 1961 and 1962 Data only.

Forage Crop Publications and Papers Presented

from May, 1962 to April 30, 1963

Crop Science Department, O.A.C.
(Publications and papers presented prior to May 1962 are listed in the 1961 Progress Report.)

Department of Crop Science, High dry matter silage or haylage. Dept. of . Crop Sci. mimeo 120/52.1 Y62, 4 pp. June, 1962.

Department of Crop Science. 1962 Crop Notes for extension, promotion and sales programs. Dept. of Crop Sci. mimeo, 30 pp . Sept. 1962. (With Kemptville Agricultural School and Western Ontario Agricultural School.)

Jones, G.E. Relative merits of growing cereal crops or forages for millk and/or beef production in the East Central Region. Can. Soc. Agron. Proc. 1962, pp. 43-46, 1962.

Jones, G.E. Use of herbicides in the establishment of forage seedlings. Forage Notes 8: No. 3, 16-19, Fall, 1962.

Ontario Forage Crops Committee. 1962 progress report on farm plantings of forage crops, Department of Crop Sci. mimeo, 15 pp. Oct. 1962. (Dept. of Crop Sci., with K.A.S., W.O.A.S., and Soils and Crops Branch of the O.D.A.)

Tossell, W.E. Ontario's field crop research program. Proc. Ont. Soil and Crop Improvement Assoc. 1963 convention, pp. 81-85, Jan. 1963.

Tossell, W.E. What the forage seed consumption area of Canada looks for in seed. Can. Seed Growers' Assoc. Proc. pp. 19-24, June 1962.

Young, W.S. Field crop recommendations for 1963. Proc. Ont. Soils and Crop Improvement Assoc. 1963 convention, pp. 76-81, Jan. 1963.

[^0]: * 24 years (3 years at each of 8 locations).

[^1]: + Consumption in pounds per day per cow.
 - Intake in grams per metobolic weight (sheep).

[^2]: * Measured June 27

