PROGRESS REPORT FORAGE CROP INVESTIGATIONS 1963

Ī

-

T

T

T

T

T

T

T

T

T

Ī

T

T

T

T

Ī

FORAGE MANAGEMENT

Crop Science Department Ontario Agricultural College Guelph

FORAGE PROGRESS REPORT 1963

This report contains data on Crop Science Department forage trials. It includes data on variety trials and results of breeding experiments. Most of the variety trials are reported in the "1963 Report on Field Trials of Varieties and Mixtures". That report and the present report should be filed together. The report is prepared for use of the members of the Crop Science Department and for those associated with the forage program.

CONTENTS

(Year refers to year trial was seeded and number in brackets is experiment number)

	Page
Weather Records, 1963 Growing Season	l
Hay Investigations	4
Hay Growth Curves, 1962 (162) - First Crop Yield Data - Aftermath Yield Data - Heights and Stages Three Year Summary of Hay Growth Curve Study	8 12
 Dry Matter Yield of Hay. Yield on Species - Variety-Stage Comparison Per cent Leaf Leaf Yield Stem Yield Per cent Dry Matter Plant Heights 	16 22 23 25 27 29 31
Grass Shoot Growth Above Ground, 1962 (162B) Climatological Data From Forage Growth Curve Study Alfalfa Row Width and Spacing Test, 1963 (165) Mixture Diversity Trial, 1961 (310) Conditioning and Raking Time Study (172) Bale Drying Study (170)	33 41 52 54 58 61
Pasture Investigations Roughland Pasture Assessment and Improvement Project Rate and Method of Seeding Rape (173)	62 65
Forage Quality Investigations <u>In Vitro</u> Digestion Technique for Forages Modifications in Technique Reproducibility of Technique Lignin Analysis and Deposition Digestibility of Forages Treated With KOH	66 68 69 69 69
In <u>Vitro</u> Dry Matter Digestibility 1. Whole Plant (151, 157, 162) 2. Leaf-Stem (157) Variation in In Vitro Dry Matter Digestibility (151, 157, 162)	70 70
A. Due to Year B. Due to Species Per cent Crude Protein	74 75
1. Whole Plant (151, 157, 162) 2. Leaf-Stem (151, 157)	76 76
Stand Establishment Investigations Plant Competition During the Seedling Year in Alfalfa-Grass Associations Established Without a Companion Crop, 1961 and 1962	m -
(159, 164) Barley Varieties and Establishment, 1963 (166) Oat Lodging and Forage Establishment, 1963 (167)	79 81 83
Forage Crop Publications and Papers Presented, May, 1962-April 30, 1964	86

.

1963 GROWING SEASON WEATHER RECORDS

,

TEMPERATURE		APRIL	MAY	JUNE	JULY	AUGUST	SEPTEMBER
Harrow	Max. Min.	56 .2 37.0	65.5 45.8	79.0 56.1	82.1 61.9	76.1 58.4	71.4 50.7
Ridgetown	Max.	56.1	64.4	77.6	81.2	76.4	70.6
	Min.	35.0	44.2	56.1	60.8	56.3	48.7
Guelph	Max. Min.	54.4 32.0	61.9 40.0	76.1 50.3	79.0 55.9	73.3 51.3	67.0 42.6
	F11,11.						
Kemptville	Max. Min.	52.7 31.5	63.9 41.4	78.8 54.1	81.5 59.0	74.3 52.6	66.4 41.5
	MIN.	21.7	41.4	74.1			
Ottawa	Max.	52.5	64.0	78.6	80.3	72.6 53.7	64.5 43.4
	Min.	33.1	41.8	55.5	60.5	22.1	+• •
New Liskeard	Max.	46.8	59.0	75.8	77.4	66.9	66.9
	Min.	27.4	36.1	48.8	55.7	50.6	51.0
Kapuskasing	Max.	43.9	56.3	73.8	75 .2	66.8	58.4
	Min.	23.1	31.2	43.5	52.3	45.0	39.9
Gore Bay	Max.	51 .2	59.5	73.1	78.1	71.7	63.9
	Min.	28.7	36.0	48.9	55.9	52.1	44.1
Fort Frances	Max.	50.7	60.5	74.7	78.2	75.0	68.6
	Min.	29.3	39.3	54.7	58.2	52.9	47.2
PRECIPITATIC	<u>N</u>						
Harrow		3.5	2.0	2.2	1.5	1.9	1.5
Ridgetown		4.1	3.4	2.1	2.8	1.5	1.3
Guelph		2.7	3.0	0.6	3.2	2.2	1.9
Kemptville		3.2	2.2	07	1.6	4.3	4.1
Ottawa		2.5	2.6	1.5	3.2	3.5	4.8
New Liskeard	I .	1.2	1.6	1.4	1.9	6.7	2.1
Kapuskasing		2.7	2.4	3.2	4.9	3.6	1.8
Gore Bay		2.4	1.7	1.3	2.9	2.8	1.2
Fort Frances	3	3.5	4.4	2.1	4.4	3.9	2.4

DEPARTURES OF 1963 GROWING SEASON FROM NORMAL

TEMPERATURE		APRIL	MAY	JUNE	JULY	AUGUST	SEPTEMBER
Harrow	Max. Min.	+0.2 +0.2	-2.8 _1.8	+0.2 -2.3	-1.3 -0.8	-5.5 -2.9	-3.0 -3.8
Ridgetown	Max.	42.5	_0.9	+0.4	-1.1	-4.0	-2.0
	Min.	-1.2	-2.2	-0.7	_0.7	-3.9	-5.2
Guelph	Max. Min.	+3.1	_2.0 _3.6	+1.8 -3.0	_0.3 _1.5	-4.4 -4.7	-2.8 -6.5
Kemptv111e	Max. Min.	-+0.4 -1.3	-2.6 -2.4	+2.4 +0.5	+0.1 +1.1	-4.8 -2.9	-3.5 -6.3
Ottawa	Max.	+2.2	_1.4	+3.6	+0.4	-5.6	-3.8 -4.7
	Min.	+0.7	_1.9	+2.0	+2.6	-1.9	
New Liskeard	Max. Min.	+0.9 +3.1	_3.2 _0.3	+3.4 +1.3	+0.6 + 2. 6	-7.9 -0.1	+2.0 +7.9
Kapuskasing	Max. Min.	+1.2 +1.6	-1.2 -3.8	+4.5 -3.1	+1.0 +0.3	-4.7 -5.3	-2.1 -1.5
Gore Bay	Max. Min.	+ 2. 6 +0.5	-2.2 -2.6	+2.4 +0.2	+0.3 +1.6	-4.5 -1.8	-2.6 -2.7
Fort Frances	Max.	+1.7	-2.5	+2.5	_0,1	0	+4.2 +2.7
	Min.	+0.9	-1.3	+4.0	+1.9	-1.1	• 2 • 7
PRECIPITATION							
Harrow		+0.8	-0.7	-0.9	-1.0	-0.7	-0.8
Ridgetown		+1.0	+0.4	-0.7	0	-0.9	-1.2
Guelph		0	-0.2	-2.4	0	-0.8	-1.0
Kemptville		+0.5	-0.7	-1.9	-1.2	+1.4	+1.1
Ottawa		-0.2	-0.2	-1.6	0	+0.2	+1.6
New Liskeard		-0.5	-0.6	-1.9	-1.7	+3.6	-1.2
Kapuskasing		+1.0	-0.1	+0.3	+1.8	+0.5	-1.3
Gore Bay		-0.2	-0.7	-1.5	+0.7	+0.5	-2.2
Fort Frances		+1.5	+1.7	-2.0	+0.6	0	-0.9

1931-1960 MONTHLY AVERAGES OF RAINFALL AND TEMPERATURE

FOR GROWING SEASON

TEMPERATURE		APRIL	MAY	JUNE	JULY	AUGUST	SEPTEMBER	OCTOBER
Harrow	Max.	56.0	68.3	78.8	83.4	81.6	74.4	62.9
	Min.	36.8	47.6	58.4	62.7	61.3	54.5	44.1
Ridgetown	Max.	53.6	65.3	77.2	82.3	80.4	72.6	60.9
	Min.	36.2	46.4	56.8	61.5	60.2	53.9	43.9
Guelph	Max.	51.3	63.9	74.3	79.3	77.7	69.8	57.9
-	Min.	33.3	43.6	53.3	57.4	56.0	49.1	39.3
Kemptville	Max.	52.3	66.5	76.4	81.4	79.1	69.9	57.4
	Min.	32.8	43.8	53.6	57.9	55.5	47.8	37.0
Ottawa	Max.	50.3	65.4	75.0	79.9	78.2	68.3	55.9
	Min.	32.4	43.7	53.5	57.9	55.6	48.1	37.5
New Liskeard	Max.	45.9	62.2	72.4	76.8	74.8	64.9 43.1	
(1921-1950 normals)	Min.	24.3	36.4	47.5	53.1	50.7	43•1	
Kapuskasing	Max.	42.7	57.5	69.3	74.2	71.5	60.5	48.1
	Min.	21.5	35.0	46.6	52.0	50.3	41.4	33.0
Gore Bay	Max.	48.6	61.7	71.7	77.8	76.2	66.5	55.2
	Min.	28.2	38.6	48.7	54.3	53.9	46.8	37.6
Fort Frances	Max.	49.0	63.0	72.2	78.3	75.0	64.4	53 .2 34.8
	Min.	28.4	40.6	50.7	56.3	54.0	44.5	54+0
PRECIPITATION								
Harrow		2.7	2.7	3.1	2.5	2.6	2.3	2.2
Ridgetown		3.1	3.0	2.8	2.8	2.6	2.5	2.7
Guelph		2.7	3.2	3.0	3.2	3.0	2.9	2.6
Kemptville		2.7	2.9	2.6	2.8	2.9	3.0	2.6
Ottawa		2.7	2.8	3.1	3.2	3.3	3.2	2.6
New L is keard (1921-1950 no	rmals)	1.7	2.2	3.3	3.6	2.9	3.3	
Kapu skasi ng		1.7	2.5	2.9	3.1	3.1	3.1	2.4
Gore Bay		2.6	2.4	2.8	2.2	2.3	3.4	3.1
Fort Frances		2.0	2.7	4.1	3.8	3.9	3.3	1.9

First Crop Data (Yield lbs./acre)

Cut No.	Date Cut	Stage Cut	Height Cms.	% D.M.	Yield D.M.	Weekly Increase b.M.	g* Leaf	* Yield Leaf	Weekly Increase Leaf	Yieľd Stem	% Crude Prot.	Yield Crude Prot.	% *** Dig. D.M.	Yield ^{**} Dig. D.M.
VEF	RNAL													
01 02 03 04 05 06 07 08 09 10 11 12	5-6 5-13 5-21 5-27 6-3 6-11 6-17 6-24 7-2 7-8 7-16 7-22	Veg. Veg. Veg. Early bud Buds emerged Late bud Late bud Late flower Early seed Early seed Early seed	10 16 23 28 45 66 71 77 84 93 96 96	19.9 18.0 17.9 20.8 18.1 19.8 20.4 25.2 27.4 30.7 32.0 31.8	69 409 1087 1665 2320 3337 3627 4753 4951 5288 6136 5435	 340 678 578 655 1017 290 1126 198 337 848 -701	75.2 64.3 54.1 46.8 42.7 41.3 40.7 37.5 32.8 31.3	813 1015 1167 1553 1453 1824 1991 1986 2009 1693	 202 152 386 -100 371 167 -5 23 -316	274 650 1153 1784 2174 2929 2960 3302 4127 3742	34.4 28.3 24.2 22.2 20.2 18.8 16.4 15.8 14.8 13.3 13.8	134 309 406 516 676 677 780 721 784 817 751	78.7 72.9 76.9 77.9 74.1 69.0 67.5 64.7 61.6 59.6 56.0 55.7	49 271 791 1228 1742 2323 2352 3200 2964 3254 3507 3078
DUI	UITS													
01 02 03 04 05 06 07 08 09 10 11 12	5-6 5-13 5-21 5-27 6-3 6-11 6-17 6-24 7-2 7-8 7-16 7-22	Veg. Veg. Veg. Early bud Buds emerged Late bud Full flower Early seed Early seed Early seed Early seed	12 19 28 32 46 67 77 85 92 96 99 102	18.7 16.8 16.1 20.3 18.4 19.6 20.4 24.8 29.2 29,9 35.1 31.5	158 589 1257 1812 2339 3236 3638 4248 4406 5311 5575 5163	431 668 555 527 897 402 610 158 905 264 -412	66.0 60.8 54.1 45.7 43.0 37.9 37.3 35.6 31.0 30.7	749 1079 1149 1445 1452 1530 1581 1856 1793 1690	 330 70 296 7 78 51 275 -63 -103	 508 733 1190 1791 2186 2718 2825 3455 3782 3473	37.4 34.5 29.9 24.3 22.2 20.0 18.2 16.0 14.7 14.0 12.7 13.4	60 203 375 431 522 648 662 676 647 718 709 699	75.2 73.7 76.5 77.8 72.9 66.0 65.1 63.8 59.9 59.4 59.9 59.4 55.2	94 428 925 1392 1649 2093 2351 2594 2584 3063 3215 2993

** 5 reps. only

First Crop Data (Yield lbs./Acre)

Cut No.	Date Cut	Stage* Cut	Height* Cms.	%* D.M.	Yield D.M.	Weekly Increase D.M.	%* Leaf	Yield Leaf	Weekly Increase Leaf	Yield* Stem	%* Crude Prot.	Yield [*] Crude Prot.	%* Dig. D.M.	Yield* Dig. D.M.
CITMA	X													
01 02 03 04 05 06 07 08 09 10 11 12	5-6 5-13 5-21 5-27 6-3 6-11 6-17 6-24 7-2 7-8 7-16 7-22	Veg. Veg. Jointing Jointing Boot Boot Heads emerged Head Inter El Flower Seed Seed		24.3 21.1 19.7 21.8 18.7 18.7 20.4 25.3 32.6 42.2 39.8 42.9	314 793 1743 2565 3438 4634 5804 6252 6876 7533 7284 6681	479 950 822 873 1196 1170 448 624 657 -249 -603	81.4 57.8 47.8 45.6 35.6 33.9 34.2 30.4 27.3	2088 1987 2233 2626 2251 2339 2560 2225 1836	 -101 246 393 -375 88 221 -335 -389	477 1451 2401 3178 4001 4537 4973 5059 4845	23.7 22.6 16.7 14.4 12.6 9.9 9.8 8.9 7.7 6.5 5.7 5.6	75 185 293 371 438 465 571 567 531 491 416 376	81.6 80.5 80.9 80.4 75.2 70.9 68.3 65.2 57.5 55.3 54.1 48.7	256 635 1407 2061 2580 3289 3963 4081 3958 4156 3927 3254
ESSEX														
01. 02 03 04 05 06 07 08 09 10 11 12	5-6 5-13 5-21 5-27 6-3 6-11 6-17 6-24 7-2 7-8 7-16 7-22	Veg. Veg. Veg. Jointing Jointing Boot Boot Heads emerged Head Inter E Flower Flower		26.4 22.9 21.9 25.1 20.0 19.1 20.1 24.4 31.8 38.6 37.3 40.3	353 661 1475 2151 2853 3853 4441 5402 5692 6743 7327 6588	308 814 676 702 1000 588 961 290 1051 584 -739	92.4 74.5 59.4 54.3 46.1 38.8 33.3 31.7 32.0	 1998 2135 2324 2438 2501 2220 2250 2291 2121	 137 189 114 63 -281 30 41 -170	153 718 1529 2003 2901 3472 4493 5036 4467	25.6 24.5 18.5 14.0 13.9 11.6 9.7 8.6 7.4 6.8 6.2 6.2	66 161 280 305 396 449 432 464 457 457 418	78.4 77.1 78.9 78.7 73.4 71.3 69.5 65.5 60.9 59.3 57.1 52.0	210 511 1692 2093 2735 3079 3530 3467 3091 4178 3404

* 4 reps. only.

 \mathcal{C}

First Crop Data (Yield lbs./Acre)

Cut No.	Date Cut	Stage 	Height <u>Cms.</u>	% D.M.	Yield D.M.	Weekly Increase D.M.	%* Leaf	Yield* Leaf	Weekly Increase Leaf	Yield* Stem	% Crude <u>Prot.</u>	Yield Crude Prot.	%** Dig. D.M.	Yield** Diges. D.M
FROD	E													
01 02 03 04 05 06 07 08 09 10 11 12	5-6 5-13 5-21 5-27 6-3 6-11 6-17 6-24 7-2 7-8 7-16 7-22	Veg. Veg. Jointing Boot Heads Emerged Heads Inter El Flower Seed Seed Seed Seed Seed	21 26 38 46 65 89 0:.105 116 121 122 123 121	21.5 19.0 18.3 21.7 19.9 21.2 22.9 27.3 31.4 37.8 37.4 35.8	281 864 1441 2137 2904 3829 4041 4411 4546 5164 5321 4700	583 577 696 767 925 212 370 135 618 157 -621	85.6 69.7 59.6 65.5 71.0 55.3 64.8 61.6 65.9	 1854 2070 2470 2798 3221 2541 3684 3531 3184	 216 400 328 423 -680 1143 153 347	 283 834 1359 1243 1190 2005 1480 1790 1516	26.6 23.8 16.1 12.6 10.6 9.4 8.5 7.8 6.7 6.6 6.3 7.0	74 209 237 274 309 365 355 360 287 342 339 319	75.3 73.0 77.0 77.4 73.9 66.2 66.1 61.3 57.6 54.4 52.9 49.8	228 682 1145 1714 2216 2665 2763 2989 2753 2933 2928 2458
<u>otta</u>	WA 100													
01 02 03 04 05 06 07 08 09 10 11 12	5-6 5-13 5-21 5-27 6-3 6-11 6-17 6-24 7-2 7-8 7-16 7-22	Veg. Veg. Jointing Jointing Heads Emerged Heads Emerged Flower Flower Seed Seed Seed	17 23 36 42 63 87 98 113 120 120 120 120	21.4 18.1 17.6 20.3 16.9 18.2 19.7 25.6 33.3 41.0 39.6 38.9	120 381 957 1679 2608 4137 4947 5415 5903 6563 6657 6068	261 576 722 929 1529 810 468 488 660 94 -589	 91.2 74.9 50.6 41.9 36.9 31.2 29.8 28.9 32.5	 1580 1873 2056 2022 1898 1822 1999 2044 2101	 293 183 -34 -124 -76 177 45 57	 99 735 2081 2925 3517 4081 4564 4613 3967	31.4 31.9 24.0 20.2 17.1 13.8 11.9 10.4 8.7 8.1 7.5 6.2	38 122 232 343 449 573 593 569 513 534 502 387	75.1 76.2 77.7 78.2 73.8 68.2 66.6 61.3 53.6 51.4 45.6 41.8	91 276 747 1336 1951 2854 3344 3358 3223 3474 3122 2684

**

First Crop Data (Yield lbs./acre)

Cut No.	Date No.	Stage Out	Height Cms.	% D.M.	Yield D.M.	Weekly Increase D.M.	%* <u>Leaf</u>	* Yield <u>Leaf</u>	Weekly Increase Leaf	Yield Stem	% Crude Prot.	Yield Crude <u>Prot.</u>	%** Diges. D.M.	Yield** Diges. D.M.
SARA	TOGA										•			
01 02 03 04 05 06 07 08 09 10 11 12	5-6 5-13 5-21 5-27 6-3 6-11 6-17 6-24 7-2 7-8 7-16 7-22	Veg. Veg. Jointing Jointing Boot Heads emerged Head Inter Elo Head Inter Elo Flower Seed Seed Seed		22.8 18.4 18.5 20.1 19.0 22.4 24.3 31.3 36.8 44.1 43.4 47.3	650 1567 2735 3245 4420 5346 6243 6505 6544 7503 8393 7229	917 1168 510 1175 926 897 262 39 959 890 -1164	 67.8 64.3 46.5 35.5 33.7 25.3 27.4 22.6 25.4 24.4	 2298 2393 2216 2128 2309 1772 1823 1721 2285 1943	 95 -177 -88 181 -537 51 -102 564 -342	437 852 2204 3218 3934 4733 4721 5782 6108 5286	25.8 23.2 16.9 14.5 11.3 8.8 8.2 6.6 6.4 5.5 5.5 4.9	167 364 404 480 502 473 515 434 422 419 473 363	78.5 79.0 79.0 81.3 75.4 67.7 66.2 62.1 59.4 59.1 59.1 59.1	567 1361 2348 2835 3455 3861 4243 4170 3953 4462 5073 4301
CANA	DIAN													
01 02 03 04 05 06 07 08 09 10 11 12	5-6 5-13 5-21 5-27 6-3 6-11 6-17 6-24 7-2 7-8 7-16 7-22	Veg. Veg. Jointing Boot Heads emerged Head Inter Elo Head Inter Elo Flower Seed Seed Seed		24.3 19.9 20.0 23.1 19.4 20.6 23.3 30.1 36.9 42.7 41.8 44.2	4874 5278 5100 5765 6739 6949	290 786 400 975 1932 404 -178 665 974 210 -947	82.3 76.1 57.1 36.5 34.9 26.4 27.5 23.6 26.3 23.1	1721 1741 2595	 -18 445 -217 372 -593 258 20 854 -1110	93 511 1041 3190 3222 3637 4044 4998 4354 4517	25.4 26.2 20.0 17.3 14.3 9.9 9.3 8.3 7.1 6.3 6.2 6.3	135 205 314 334 420 506 494 418 425 434 388	75.0 77.5 78.9 80.8 76.7 70.0 68.1 64.0 60.9 59.2 57.9 56.8	404 689 1367 1707 2444 3004 3871 3399 3644 4057 4104 3460

4 reps only 5 reps only *

**

Aftermath Yields (Lbs/Acre)

Fi	rst C ut					Af	ermath	Harvest	t Dates		1. A.		Afterm.	Total
Cut No.	Date	Yield	7-2	7-8	7-15	7-30	8-6	8-19	8-26	9-4	9-9	10-71	Total	Yield
VERNAL														
01 02 03 04 05 06 07	5-6 5-13 5-21 5-27 6-3 6-11 6-17	69 409 1087 1665 2320 3337 3627	4058 2799	2492 2539	1956	2266 2250		2640 2277 2002	1963 1798		1071	933 558 480 197 227	7631 5634 4974 4699 3981 3337	7700 6043 6061 6364 6301 6674
08 09 10 11 12	6-24 7-2 7-8 7-16 7-22	4753 4951 5288 6136 5435				1997	2005 1922			2409 2038	1042	877 826 837 163 149	3292 2874 2831 2759 2572 2187	6919 7627 7782 8047 8708 7622
DUPUITS														
01 02 03 04 05 06	5-6 5-13 5-21 5-27 6-3 6-11	158 589 1257 1812 2339 3236	3518 2355	2476 2549	2271	2567		2742 2341 2240	2280 2186		1428	1001 901 982 801 760	7261 5597 5698 5630 5217 3995	7419 6186 6955 7442 7556 7231
07 08 09 10 11 12	6–17 6–24 7–2 7–8 7–16 7–22	3638 4248 4406 5311 5575 5163				2258 2222	2359 2151			2387 2015	1335	1195 1198 1252 752 579	3593 3417 3557 3403 3139 2594	7231 7665 7963 8714 8714 7757

 $\mathbf{c}_{\mathbf{b}}$

TEST 162 - HAY GROWTH CURVES - 1963

Aftermath Yields (Lbs./Acre)

			Aftermath Harvest Dates											Afterm.	Total
Cut No.	Date	Yield	6-24	7-2	7-15	7-30	8-6	8-12	8-19	8-26	9-4	9-9	10-2	Total	Yield
CLIMAX															(170
01 02 03 04 05 06	5-6 5-13 5-21 5-27 6-3 6-11	314 793 1743 2565 3438 4634	5669	4814 2903 2030	929	593	L87	696	578 428 547	297		157 200		6365 5392 3331 2577 1226 750 687	6679 6185 5074 5142 4664 5384 6491
07 08 09 10 11 12	6-17 6-24 7-2 7-8 7-16 7-22	5804 6252 6876 7533 7284 6681				487	₩ 01	751 822	806		628 944		118 154 82 74 76	869 976 888 702 1020	7121 7852 8421 7986 6681
ESSEX Ol O2 O3	5-6 5-13 5-21	353 661 1475	4987	4591 3366				675	396 391 398					5662 4987 3757 3253	6015 5648 5232 5404
04 05 06 07 08 09 10 11 12	5-27 6-3 6-11 6-17 6-24 7-2 7-8 7-16 7-22	2151 2853 3853 4441 5402 5692 6743 7327 6588		2855	1930	639	406	867 493	530	245	885 784	105 93	86 86 140 167 91	2175 744 499 953 579 670 1052 875	5028 4597 4940 6355 6271 7413 8379 7463

Aftermath Yields (Ibs/Acre)

Aftermath Harvest Dates												Afterm.	Total				
Cut	Date	Yield	6-11	6-24	7-8	7-15	7-22	7-30	8-6	8-12	8-19	8-26	9-4	9-9	10-7	Total	Yield
FROD	£		· .										· .				
01 02 03 04 05 06 07 08 09 10 11 12	5-6 5-13 5-21 5-27 6-3 6-11 6-17 6-24 7-2 7-8 7-16 7-22	281 864 1441 2137 2904 3829 4041 4411 4546 5164 5321 4700	2545	2307 1176	1232	1086	636 725	929	962	920 1148 979	839 579 558 569	895 1002	546 354	316	146 200 103 112 117 121 149 154 143 139	3727 3373 2215 1914 1756 1411 1404 1278 1297 1133 1038 1141	4008 4237 3656 4051 4660 5240 5445 5689 5843 6297 6359 5841
OTTA	001 AW															. • ·	
01 02 03 04	5-6 5-13 5-21 5-27	120 381 957 1679	3005	4279 2599	3398	1400	757			1316	1368 954		592		225 119 165 125	4354 5820 4086 4517 2679	4474 6201 5043 6196 5287
05 06 07 08 09 10 11 12	6-3 6-11 6-24 7-2 7-8 7-16 7-22	2608 4137 4947 5415 5903 6563 6657 6068				1670	863	974	922	1203 1125	884 797	1276 1240	374	314	12) 167 118 278 251 206 216	2079 1827 1466 1236 1481 1376 1482 1456	5964 6413 6651 7384 7939 8139

Aftermath Yields (Lbs./Acre)

Fi	rst Cut										Afterm.	Total			
Cut No.	Date	Yield	6-11	6-17	6-24	7-15	7-30	8-6	8-12	8-19	8-26	9-4	10-2	Total	Yield
SARATOGA															· · · · · · ·
01 02 03 04 05	5-6 5-13 5-21 5-27 6-3	650 1567 2735 3245 4420	3257	2298	926	1422	1361		1356	894 805	352		212	4613 3192 1751 1774 1573	5263 4759 4486 5019 5993
06 07 08 09 10 11 12	6-11 6-17 6-24 7-2 7-8 7-16 7-22	5346 6243 6505 6544 7503 8393 7229						1068 943	1115 1167	1013		1164 813	172 211 197 203 220	1240 1154 1312 1370 1233 1164 813	6586 7397 7817 6544 8736 9557 8042
CANADIAN															
01 02 03 04	5-6 5-13 5-21 5-27	491 781 1567 1967	3064	2464	1573	2063			731	784 605	173			3795 3248 2178 2236	4286 4029 3745 4203
05 06 07 08 09 10 11 12	6-3 6-11 6-24 7-2 7-8 7-16 7-22	2942 4874 5278 5100 5765 6739 6949 6002					1080	748 551	700 875	686		568 503	94 109 144 124 128 149	1174 857 695 824 1003 835 568 503	4116 5731 5973 5924 6768 7574 7517 6505

TEST 162 - HAY GROWTH CURVES - 1963

Heights and Stages - Alfalfa

									0 -			-0																
	Fi	rst Gro	wth										· F	fterm	aths													
Cut	Date	Yield	Hgt.	Stage	5-13	5-21	5-27	6-3	6-1	1 6-1	L7 6	-24	7-2	7-8	7-1	5 7-1	22 7	-30	8–6	8-1	.2 8	-19	8-2	26 9.	-4	9-9	10-	7
VERNA	L																											-
01 02 03 04 05 06 07 08 09 10 11 12	5-6 5-13 5-21 5-27 6-3 6-11 6-17 6-24 7-2 7-8 7-16 7-22	69 409 1087 1665 2320 3337 3627 4753 4753 4951 5288 6136 5435	10 16 23 28 45 66 71 77 84 93 96 96	Veg. Veg. Veg. E.Bud Bud Emer. Late Bud Late Bud L.Flower Early Seed Early Seed	8 A	. 14 A 9 A	17 A 11 A 0	19 A 9 A	. 35 / . 22 / . 18 /	1 47 1 30 1 28	C 5 A 3 A 3 A 1	63 C 67 B 64 A 9 A	70 E 55 C 51 C 35 E 22 A 20 A	6 A 58 D 56 D 341 C 31 A 27 A 18 A 7 A	11 / 5 / 44 1 34 1 32 / 23 / 15 /	A 23 A 15 A 16 B 40 A 39 A 39 A 39 A 32 A 28 A 19	B 3 A 2 A 2 C 4 C 4 B A 2 A 2 C 4 A 2 A 2 C 4 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2	4 B B B B A E D D C B B C B B C B B C B B C B B C B	42 (38 1 36 1 32 1 8 1 8 1 45 1 45 1 38 1	C 45 B 44 B 40 A 35 A 16 A 15	C 4 4 3 4 2 4 3 4 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 D D C C A A A A A C	6 6 36 41 25 22 23 17 17 42	C 22 A 22 A 22 A 22 A 22 A 22 A 22 D 43	5 A A A A A A A A A A A A A A A A A A A	31 B		4 4 4 4 4 4 8 4 4 4 4 4 4 4 4 4 4 4 4 4
DUPU	ITS																											
01 02 03 04 05 06 07 08 09 10 11 12	5-6 5-13 5-21 5-27 6-3 6-11 6-17 6-24 7-2 7-8 7-16 7-22	158 589 1257 1812 2339 3236 3638 4248 4406 5311 5575 5163	12 19 28 32 46 67 77 85 92 96 99 102	Veg. Veg. Veg. Early Bud Bud Emerg. Iate Bud Late Bud Late Flower Early Seed Early Seed Early Seed				16 A	. 36 1 . 25 1 . 23 1	A 44 A 34 A 34	B 5 B 4 A 4 A 3 1	55 C 5 B 2 B 1 A 1 A	67 E 58 I 60 I 51 E 33 A 28 A	8 A 65 E 65 D 65 D 56 C 40 C 34 E 26 A 11 A	15 1 6 1 61 1 46 (36 (24)	A 29 A 20 A 19 D 50 C 44 C 43 C 43 A 27	B 3 3 2 5 4 5 4 4 3	9 D 8 C 8 E 8 E F E D C 5 C 8	43 1 45 (45 (40 1 10 1 53 1 52 1 45 1	47 49 50 8 45 19 18	D 455 C C 6 22 A 22 A 15 D	9338966546	7 9 55 34 31 24 23 57	A 1' A 19 D 10 B 3' B 3' A 3' A 3' E 5	7 A A A B B B B A E	40 C 37 C		404404444444444444444444444444444444444

Heights and Stages - Timothy

									0			0												
	First	Growth												Áf	terma	ths								
Cut	Date	Yield	Hgt.	Stage	5-13	5-21	- 5-2	27 6-3	6-	11 6	-17	6-24	7-2	7-8	7-15	7-22	7-3		8-12	2 8-19	8-26	5 9-4	9-9	9-30
CLIMA	X												÷											
01 02 03 04 05 06 07 08 09 10 11 12 ESSEX	5-6 5-13 5-21 5-27 6-3 6-11 6-17 6-24 7-2 7-8 7-16 7-22	314 793 1743 2 5 65 3438 4634 5804 6252 6876 7533 7284 6681	19 26 39 46 64 88 101 109 117 117 112 114	Veg. Veg. Jointing Jointing Boot Boot Heads Emer. Heads Emer. Flower Seed Seed	•		. 24	A 41 A 30	в 64 в 46 в 46	C 7 B 6 B 5 A 1	7 C 1 C 7 C	86 D 74 D 67 D 25 A	19 A	0 0 37 C 23 A 18 A	0 0 42 D 23 Å 19 Å	14 A 12 A 15 A 15 A 30 B 24 A 22 A 15 A	20 22 25 18 43 31 29 26 19 12	A 29 A A 26 A A 26 A A 27 A A 21 A B 32 B A 31 A A 32 A A 30 A A 25 A A 23 A	A 27 A 27 A 30 A 21 A 20 A 316 A 34 A 35 A 32 A 28 A	. 30 A . 29 A . 30 A . 23 A . 20 A . 21 A . 15 A . 17 A . 39 A . 32 A	13 1 13 1 14 1 25 1 21 1 23 1 19 1 22 1 12 1 33 1	L 19 A L 18 A L 17 A L 12 A L 21 A L 23 A L 25 A L 25 A L 19 A L 36 A	23 A 24 A	94 94 104 74 11 94 11 94 94 94 94 94
01 02 03 04 05 06 07 08 09 10 11 12	5-6 5-13 5-21 5-27 6-3 6-11 6-17 6-24 7-2 7-8 7-16 7-22	353 661 1475 2151 2853 3853 4441 5402 5692 6743 7327 6588	19 23 38 56 72 90 98 101 105 104	Veg. Veg. Veg. Jointing Jointing Boot Boot Head Emer. Head Emer. Flower Flower	14 A		. 20	A 30	B 53 B 46 B 37	B 6 B 5 B 4 B 3	5 C 5 C 8 B	76 C 63 C 57 C 43 C	92 D 77 D 71 D 55 C 19 A	0 0 60 D 22 A 19 A	0 0 71 D 25 A 21 A	11 A 14 A 13 A 10 A 28 A 25 A 26 A 13 A	19 22 21 17 40 30 29 23 23 14	A 32 A A 26 A A 26 A A 25 A A 21 A C 16 A A 30 A A 31 A A 28 A A 27 A A 23 A A 20 A	27 A 26 A 26 A 26 A 22 A 19 A 19 A 16 A 30 A 30 A 30 A 29 A	28 A 28 A 27 A 23 A 20 A 20 A 19 A 14 A 32 A 31 A	13 1 13 1 14 1 25 1 23 1 19 1 18 1 18 1 18 1 18 1 35 1	16 A 16 A 17 A 23 A 21 A 20 A 20 A 20 A 39 A	23 A 23 A	944 9844 744 9944 9944 108 108

Heights and Stages - Orchardgrass

First Growth

Aftermaths

	Fir	st Grow	th									÷	AI	termat	ths						• ·		
Sut:	Date	Yield	Hgt	Stage	5-13	5-21	5-27	6-3	6-11	6-1	.7 6-2	24 7-2	7-8	7-1	5 7-2	2 7-	30 8-	6 8-1	2 8-1	9 8-2	6 9-1	+ 9-9	10-7
PROD	E																						
01 02 03 04 05 06 07 08 09 10 11 12	5-6 5-13 5-21 5-27 6-3 6-11 6-17 6-24 7-2 7-8 7-16 7-22	281 864 1441 2137 2904 3829 4041 4411 4546 5164 5321 4700	21 26 38 46 65 89 105 116 121 122 123 121	Veg Veg Jointing Boot Head Emerged Head Inter I Flower Seed Seed Seed Seed Seed	d		21 A	33 B 25 A	58 D 38 A 33 A	86 42 40 34	F 95 A 47 A 44 A 38 A 26	F 16 A A 15 A A 47 A A 44 A A 34 A A 30 A	A 20 1 A 21 1 A 48 1 A 46 1 A 37 1 A 34 1 A 24 1	A 26 I A 25 I A 12 I A 46 I A 42 I A 36 I A 29 I A 21 I	31 28 22 15 44 40 35 29 27	A 36 A 32 A 22 A 26 A 21 A 44 A 42 A 39 A 29	A 37 A 34 A 31 A 30 A 30 A 30 A 18 A 45 A 40 A 41 A 33	A 30 A 40 A 37 A 33 A 31 A 33 A 31 A 32 A 43 A 42 A 36 A 40	A 16 . A 38 . A 34 . A 33 . A 35 . A 28 . A 24 . A 16 . A 16 . A 16 .	A 20 A 15 A 15 A 13 A 15 A 30 A 26 A 20 A 23 A 44	A 24 A 21 A 19 A 19 A 20 A 20 A 32 A 25 A 25 A 15	Á A A A A A 33 A A A	16 A 22 A 20 A 21 A 21 A 15 A 13 A 26 L 29 A 21 A 23 L
OTTA	MA 100																						
01 02 03 04 05 06 07 08 09 10 11 12	5-6 5-13 5-21 5-27 6-3 6-11 6-17 6-24 7-2 7-8 7-16 7-22	120 381 957 1679 2608 4137 4947 5415 5903 6563 6657 6068	17 23 36 42 63 87 98 113 120 120 120 122	Veg Veg Jointing Jointing Head Emerged Head Emerged Flower Flower Seed Seed Seed	d		23 Å	40 B 30 A	63 C 51 C 50 C	81 68 66 34	D100 D 84 D 83 A 40 A 27	F 17 . E 21 . E100 : A 48 . A 33 . A 25 .	A 21 A A 23 A F114 I A 54 A A 37 A A 30 A A 20 A	A 23 1 A 29 1 F 14 1 A 59 1 A 39 1 A 36 1 A 23 1 A 16 1	A 30 A 34 A 26 A 17 A 46 A 42 A 31 A 27 A 24	A 41 A 38 A 36 A 34 A 25 6 A 25 A 39 A 35 A 28	A 45 A 45 A 39 A 34 A 34 A 19 A 42 A 40 A 40 A 37	A 36 A 47 A 47 A 41 A 38 A 38 A 38 A 27 A 20 A 42 A 43 A 39	A 18 . A 50 . A 44 . A 40 . A 41 . A 30 . A 30 . A 26 . A 19 . A 18 . A 46 .	A 24 A 15 A 17 A 16 A 16 A 33 A 30 A 26 A 24 A 50	A 27 A 25 A 27 A 23 A 23 A 37 A 31 A 31 A 29 A 19	A A A A A A 36 A A A	18 A 30 A 29 A 27 A 28 A 25 A 19 A 16 A 33 A 29 A 27 A 27 A

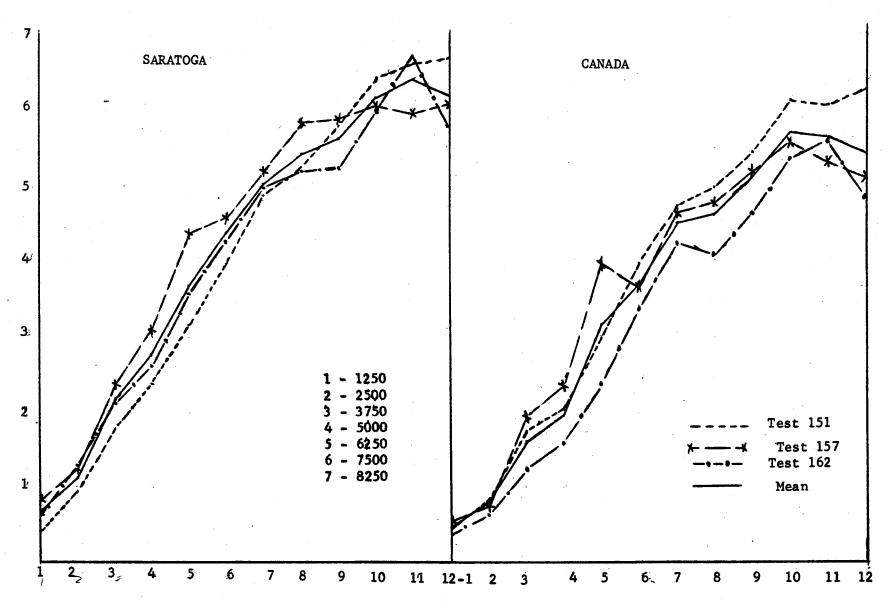
. .

Heights and Stages - Bromegrass

		First	Growth												<i>i</i> .ft	erma	aths	5										
Cut	Date	Yield.	Hgt.	Stage	5-1	.3 5-	21	5-27	6-3	6	-11	6-17	6-2	24 '	7–2	7-	87	'-15	7-2	2 7	<u>-30</u>	8-6	8-	-12	8-19	8-26	9-4	9-30
SARA	TOGA																											
01 02 03 04 05 06 07 08 09 10 11 12	5-6 5-13 5-21 5-27 6-3 6-11 6-17 6-24 7-2 7-8 7-16 7-22	650 1567 2735 3245 4420 5346 6243 6505 6544 7503 8393 7229	28 38 56 61 90 115 127 133 137 136 132 135	Veg Veg Jointing Boot Head Emerge Head Inter Head Inter Flower Seed Seed Seed	ed El.	17				; 79 2' 2	9 D 7 A	95 E 36 A 31 A	0 40 39 25	B A A A A	20 A 19 A 48 E 34 A 28 A	25 28 351 36 33 27	A 2 A 3 B 3 A 3 A 3 A 2 A 2 I	28 A 33 B 34 B 36 A 36 A 33 A	35 37 6 42 38 34 30 27 16	A 3' B 2 2 4 4 4 2 2 4 4 4 2 3 4 4 3 4 3 4 3 4	9 BA 7 BBA 9 BA 8 BBA A 8 A	39 40 28 11 45 44 40 42 37 35	B 40 B 42 A 30 A 18 B 13 B 13 B 43 B 43 A 39 A 39	0 B B A A A B B B B A A B B B B A A B B B B A B B B B A B B B B A B B B B A B B B B A B B B B A B B B B A B B B B A B B B B A B B B B B A B B B B B A B B B B B A B B B B B A B B B B A B B B B B A B B B B B A B B B B A B B B B A B B B B A B B B B B B A B B B B B A B B B B B B B A B	40 E 42 E 31 A 21 A 14 A 13 A 13 A 41 E 41 E	15 A 15 A 32 A 22 A 20 A 21 A 17 A 19 A 17 A	21 A 17 A 20 A 13 A 26 A 24 A 23 A 22 A 22 A 22 A 21 A 3 46 B	8 A 9 A 11 A 11 A 12 A 11 A 13 A 11 A 11 A 9 A
CANA	DIAN								. •																			
01 02 03 04 05 06 07 08 09 10 11 12	5-6 5-13 5-21 5-27 6-3 6-11 6-17 6-24 7-2 7-8 7-16 7-22	491 781 1567 2942 4874 5278 5100 5765 6739 6949 6002	20 26 37 46 66 91 108 118 119 119 121 118	Veg Veg Jointing Boot Head Emerge Head Inter Head Inter Flower Seed Seed Seed	ed El.	17			3 45 (34 (20 1 13 (5 5 3 3' 5 3'	1 D 9 C	80 E 56 I 60 I	0 68 65 24	E E A A	19 A 11 A 75 B 30 A 18 A	1 23 1 19 5 77 1 34 1 26 1 22	A 2 A 2 F 4 A 2 A 2 A 2 A 2 A 1 A 1	24 A 22 A 33 F 37 A 27 A 26 A 19 A	26 28 9 39 29 28 28 26 21	43214333322 4333322	0 B 8 A 8 B 8 B 8 B 8 B 8 B 8 B 8 B 8 B 8 B 8 B	33 30 24 12 34 33 32 32 30 28	B 31 A 22 A 12 B 12 A 31 A 31 A 33 A 33 A 33 A 33 A 33 A 33	3 B 7 A 5 A 8 A 8 A 8 A 8 B 8 A 8 A 8 A 8 A 8 A 8 A 8 A 8 A 8 A 8 A	34 E 32 E 27 A 19 A 17 A 13 A 13 A 13 A 31 A	15 A 15 A 27 A 20 A 18 A 19 A 19 A 19 A 16 A		9 A 8 A 10 A 9 A 9 A 8 A 9 A

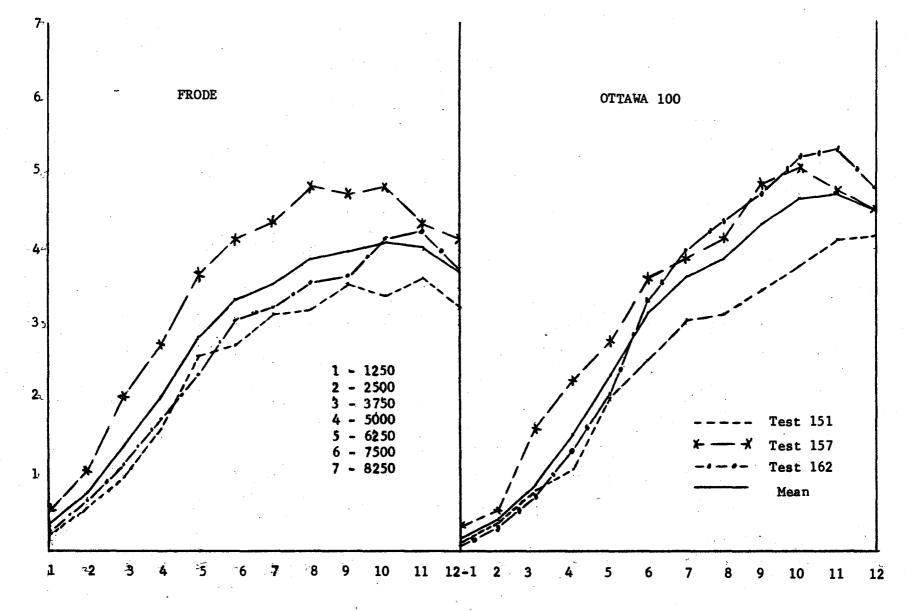
 F_{i}

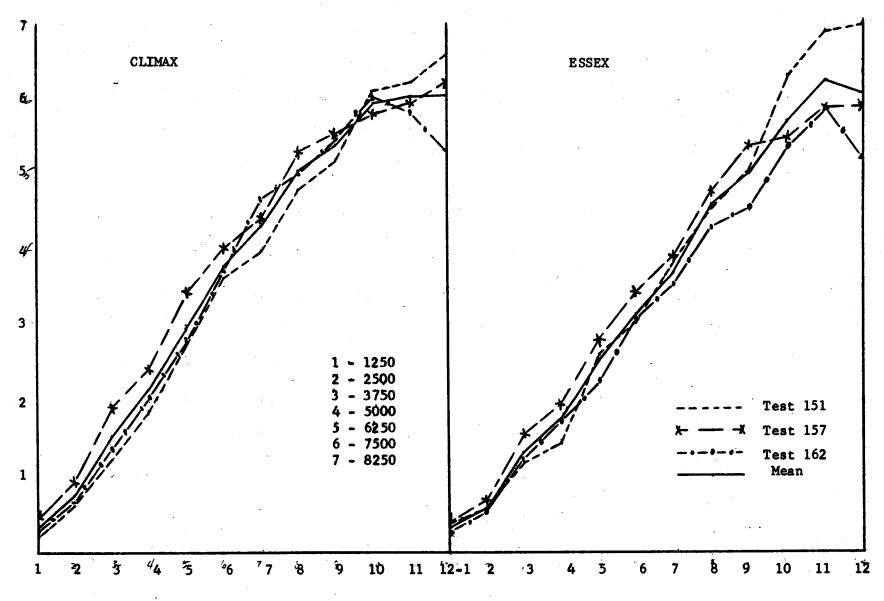
DRY MATTER YIELD OF HAY GROWTH CURVES

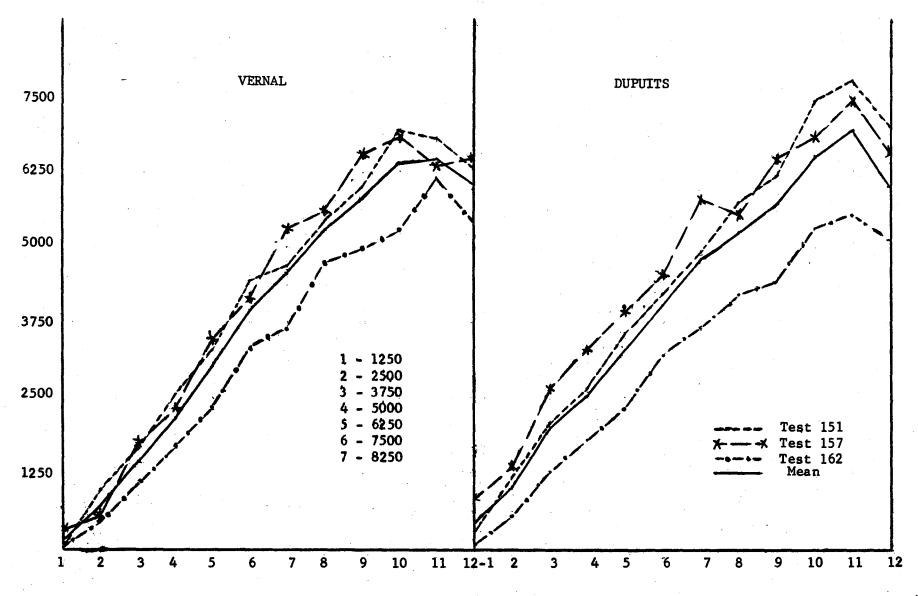

-

(Lbs. Per Acre)

Cut No.	1961	1962	1963	Mean	1961	1962	1963	Mean
VERNAL					DUPUITS			
1 2 3 4 5 6 7 8 9 10 11 12	86 984 1594 2515 3343 4390 4672 5434 5898 6959 6864 6350	279 519 1748 2307 3442 4171 5486 5615 6558 6806 6356 6471	69 409 1087 1665 2320 3337 3627 4753 4951 5288 6136 5435	145 637 1476 2162 3065 3966 4595 5267 5802 6351 6452 6085	291 1141 2115 2637 3603 4308 4983 5780 6240 7396 7758 7051	817 1344 2635 3270 3936 4555 5819 5592 6460 6803 7473 6531	158 589 1257 1812 2339 3236 3638 4248 4406 5311 5575 5163	422 1025 2002 2573 3293 4033 4813 5207 5702 6503 6935 6248
CLIMAX					ESSEX			
1 2 3 4 5 6 7 8 9 10 11 12	292 759 1596 2301 3401 4552 4964 5941 6480 7680 7793 8184	599 1175 2385 3072 4283 5025 5589 6631 6890 7250 7440 7752	314 793 1743 2565 3438 4634 5804 6252 6878 7533 7284 6681	402 909 1908 2646 3707 4737 5452 6275 6749 7488 7506 7539	445 702 1477 1864 3254 3762 4797 5684 6355 7892 8603 8696	485 808 1929 2455 3523 4291 4813 5941 6734 6803 7411 7412	353 661 1475 2151 2853 3853 4441 5402 5692 6743 7327 6588	428 724 1627 2157 3210 3969 4684 5676 6260 7146 7780 7565


DRY MATTER YIELD OF HAY GROWTH CURVES


Cut No.	<u>1961</u>	1962	1963	Mean	1961	1962	1963	Mean
FRODE					OTTAWA			
1 2 3 4 5 6 7 8 9 10 11 12	266 737 1230 2066 3218 3431 3902 4056 4483 4220 4581 3998	675 1341 2561 3429 4616 5134 5444 6093 5891 6044 5385 5191	281 864 1441 2137 2904 3829 4041 4411 4546 5164 5321 4700	407 981 1744 2544 3579 4131 4462 4853 4973 5143 5096 4630	191 469 1083 1365 2593 3133 3819 3885 4288 4733 5171 5176	384 654 2042 2809 3473 4535 4872 5137 6100 6361 5949 5661	120 381 957 1679 2608 4137 4937 5415 5903 6563 6657 6068	232 501 1361 1951 2891 3935 4543 4812 5430 5886 5926 5635
SARATOGA					CANADA	·	• •	
1 2 3 4 5 6 7 8 9 10 11 12	564 1210 2239 2952 3939 4927 5944 6557 7240 8058 8296 8313	1081 1523 2957 3872 5433 5661 6404 7266 7330 7525 7456 7563	650 1567 2735 3245 4420 5346 6243 6505 6 544 7503 8393 7229	765 1433 2644 3356 4597 5311 6197 6776 7038 7695 8048 7702	522 1032 2156 2535 3747 4983 5899 6227 6765 7673 7616 7806	650 911 2437 2894 4997 4568 5779 6006 6471 6974 6699 6348	491 781 1567 1967 2942 4233 5278 5100 5765 6739 6949 6002	554 908 2053 2465 3895 4595 5652 5778 6334 7129 7088 6719


CUTS

<u>81</u>

CUTS

CUTS

Ц

HAY GROWTH CURVE DRY MATTER YIELD (Lbs. Per Acre)

			Species -	Variety Stage	Comparison			
Stage	1961	1962	1963	Mean	1961	1962	1963	Mean
VERNAL Vegetative Medium Bud First Flower Full Flower Early Seed	984 4390 54 34 5898 6864	519 3442 5486 5615 6 806	409 3337 4753 4951 5288	637 3723 5224 5488 6319	DUPUITS 1141 4308 5780 6240 7396	1344 2635 4555 5819 6460	589 3236 4248 4406 5311	1025 3393 4861 5488 6389
CLIMAX					ESSEX			
Vegetative Boot Heads Emerged Flower Early Seed	759 4964 5941 7680 8184	1175 4283 5589 6890 7440	793 4634 6252 7533 7284	909 4627 5927 7368 7636	702 5684 6355 8603 8696	808 4813 5941 6803 7412	661 4441 5692 7327 6588	724 4979 5996 7578 7565
FRODE					OTTAWA	· .		
Vegetative Boot Heads Emerged Flower Early Seed	737 2066 3218 4056 4581	1341 2561 3429 5134 6093	864 2904 3829 4411 4546	981 2510 3492 4534 5073	469 2593 3133 4288 5171	654 2809 3473 4872 6100	381 2608 4137 5415 6563	501 2670 3581 4858 5945
SARATOGA					CANADA			
Vegetative Boot Heads Emerged Flower Early Seed	1210 3939 4927 8058 8296	1523 2957 5433 7266 7330	1567 4420 5346 6544 7503	1433 4534 5235 7289 7710	1032 3747 4983 7673 7616	911 2894 4997 6006 6974	781 294 2 4233 5765 6739	908 3194 4738 6481 7110

PER CENT LEAF OF HAY GROWTH CURVES

Ì

Cut No. VERNAL	<u>1961</u>	<u>1962</u>	<u>1963</u>	Mean	<u>1961</u> DUPUI TS	1962	1963	Mean
1 2 3 4 5 6 7 8 9 10 11 12	70.3 60.9 47.4 43.1 43.0 41.5 39.0 40.1 32.0 31.4	55.3 56.3 49.8 46.8 45.4 44.0 38.0 36.7 33.2 31.4	75.2 64.3 54.1 46.8 42.7 41.3 40.7 37.5 32.8 31.3	69.9 60.5 50.4 45.6 43.7 42.3 39.2 38.1 32.7 31.4	65.1 57.1 44.2 39.8 41.3 43.1 39.4 37.7 34.8 32.9	48.3 48.5 43.4 41.1 41.7 41.1 33.2 34.3 32.7 24.5	66.0 60.8 54.1 45.7 43.0 37.9 37.3 35.6 31.0 30.7	59.8 55.5 47.2 42.2 42.0 40.7 36.6 35.9 32.8 29.4
CLIMAX					ESSEX			
1 2 3 4 5 6 7 8 9 10 11 12	93.4 64.8 63.9 45.1 41.0 34.4 29.8 29.3 30.3	73.7 55.8 49.2 43.5 34.9 33.3 31.0 32.5 23.5	81.4 57.8 47.8 45.6 35.6 33.9 34.2 30.4 27.3	82.8 59.5 53.6 44.8 37.2 33.9 31.7 30.7 27.0	97.4 75.6 80.0 59.0 54.2 40.8 33.3 35.3 33.6	87.7 64.9 59.5 52.1 41.2 35.3 34.4 33.4 32.0	92.4 74.5 59.4 54.3 46.1 38.8 33.3 31.7 32.0	92.5 71.7 66.3 55.1 47.2 38.3 33.7 33.5 32.5

PER CENT LEAF OF HAY GROWTH CURVES

Cut No.	<u>1961</u>	1962	1963	Mean	1961	1962	1963	Mean
FRODE					OTTAWA		<u>=////</u>	116911
1 2 3 4 5 6 7 8 9 10 11 12	91.6 62.6 54.6 52.1 39.1 52.0 49.6 47.8 61.8	59.6 53.4 43.7 40.4 41.8 30.4 34.7 39.4 38.2 39.7	85.6 69.7 59.6 65.9 71.0 55.3 64.8 61.6 65.9	76.9 58.7 51.5 53.1 46.8 47.3 51.3 49.2 55.8	95.5 80.7 72.7 59.2 51.6 54.9 49.6 50.0 48.6	93.7 73.2 60.2 51.6 50.0 41.6 46.3 44.5 46.1 56.8	91.2 74.9 50.6 41.9 36.9 31.2 29.8 28.9 32.5	86.6 71.9 58.3 50.4 43.3 44.1 41.3 41.7 45.9
<u>SARATOGA</u>					CANADA			
1 2 3 4 5 6 7 8 9 10 11 12	72.0 47.6 38.2 31.3 25.9 27.1 24.0 24.3 23.3	64.0 52.3 38.1 34.4 30.3 25.0 25.2 24.6 23.5 22.7	67.8 64.3 46.5 35.5 33.7 25.3 27.4 22.6 25.4 24.4	 65.9* 62.9 44.1 36.0 31.8 25.4 26.5 23.7 24.4 23.5	84.5 50.8 39.2 31.2 26.7 30.5 23.1 22.9 26.1	71.1 60.7 42.8 34.2 27.4 22.2 20.9 18.6 19.6 19.6	82.3 76.1 57.1 36.5 34.9 26.4 27.5 23.6 26.3 23.1	76.7* 73.8 50.2 36.6 31.2 25.1 26.3 21.8 22.9 22.9

LEAF YIELD OF HAY GROWTH CURVES (Lbs. Per Acre)

Cut No.	1961	1962	1963	Mean	1961	1962	1963	Mean
VERNAL					DUPUITS			
1 2 3 4 5 6 7 8 9 10 11 12	1102 1470 1584 1889 1994 2246 2302 2787 2210 2008	965 1285 1706 1928 2490 2486 2407 2475 2095 2125	813 1015 1167 1553 1453 1824 1991 1986 2009 1693	960 1257 1486 1790 1979 2185 2233 2416 2105 1942	1373 1507 1592 1712 2230 2495 2452 2786 2694 2318	1267 1584 1708 1876 2431 2298 2294 2328 2443 1604	749 1079 1149 1445 1452 1530 1581 1850 1793 1690	1130 1390 1483 1678 2038 2108 2109 2321 2310 1871
CLIMAX					ESSEX			
1 2 3 4 5 6 7 8 9 10 11 12	2149 2198 2663 2250 2421 2220 2275 2274 2457	2249 2376 2456 2415 2208 2227 2244 2279 1722	2088 1987 2233 2626 2251 2339 2560 2225 1836	2162 2187 2451 2430 2293 2262 2360 2259 2005	1728 2462 3007 2811 3069 2594 2652 3029 2932	2134 2231 2587 2412 2443 2339 2249 2431 2301	 1998 2135 2324 2438 2501 2220 2250 2250 2291 2121	1953 2276 2639 2554 2671 2384 2384 2384 2584 2451

LEAF YIELD OF HAY GROWTH CURVES (Lbs. Per Acre)

Cut No.	1961	1962	1963	Mean	1961	1962	<u>1963</u>	Mean
FRODE					OTTAWA			
1 2 3 4 5 6 7 8 9 10 11 12	1919 2013 1845 1988 1628 2320 2052 2190 2454	1761 1815 2015 2056 2259 2003 2006 2284 2020 2044	1854 2070 2470 2798 3221 2541 3684 3531 3184	1863 2033 2124 2348 2284 2289 2673 2580 2561	1304 2343 2285 2250 1967 2290 2260 2374 2478	1907 2044 2074 2344 2433 2095 2675 2622 2684 3182	1580 1873 2056 2022 1898 1822 1999 2044 2101	1643 2097 2228 2235 1987 2262 2304 2367 2574
<u>SARATOGA</u>					CANADA			
1 2 3 4 5 6 7 8 9 10 11 12	2287 1977 1855 1854 1689 1881 1937 2025 1936	1891 2007 2064 1947 1945 1819 1833 1834 1685 1679	2298 2393 2216 2128 2309 1772 1823 1721 2285 1943	2095 2229 2086 1977 2036 1760 1846 1831 1998 1853	2138 1900 1945 1838 1667 1855 1769 1742 1766	1719 1758 2138 1564 1568 1330 1356 1347 1355 1256	1474 1456 1901 1684 2056 1463 1721 1741 1951 1485	1596 1784 1980 1731 1821 1487 1644 1619 1683 1502

STEM YIELD OF HAY GROWTH CURVES (Lbs. Per Acre)

Cut No.	1961	1962	1963	Mean	1961	1962	1963	Mean
VERNAL								
1 2 3 4 5 6 7 8 9 10 11 12	492 945 1759 2501 2678 3188 2596 4172 4654 4342	783 1022 1736 2243 2996 3129 4151 4331 4261 4346	261 579 1102 1781 1956 2602 2590 3302 4110 3731	512 849 1532 2175 2543 2973 3445 3936 4341 4139	742 1130 2011 2596 2753 3285 3788 4597 5064 4733	1368 1686 2228 2679 3388 3294 4166 4846 5030 4927	387 692 977 1721 2107 2512 2648 3312 4019 3817	832 1002 1739 2332 2749 3030 3534 4251 4704 4492
CLIMAX					ESSEX			
1 2 3 4 5 6 7 8 9 10 11 12	 152 1969 2264 2714 3520 4695 5366 5519 5727	629 1907 2364 3174 4423 4663 5335 5161 6030	477 1451 2400 3178 4000 4339 4973 5059 4845	419 1776 2343 3022 3981 4565 5225 5246 5534	 136 1285 1976 1986 2615 4171 5241 5574 5764	 321 1292 1704 2401 3498 4395 4554 4980 5111	 152 718 1530 2006 2901 3472 4493 4887 4467	203 1098 1737 2131 3005 4013 4762 5147 5114

STEM YIELD OF HAY GROWTH CURVES (Lbs. Per Acre)

Cut No.	1961	1962	1963	Mean	1961	1962	1963	Mean
FRODE					OTTAWA		<u> </u>	Mean
1 2 3 4 5 6 7 8 9 10 11 12	147 1205 1586 1914 2428 2163 2168 2391 1544	800 1614 2601 3078 3185 4090 3885 3760 3365 3147	358 910 1632 1475 1351 2103 2007 2234 1656	706 1572 2099 2191 2623 2717 2645 2663 2116	61 555 848 1569 1918 1998 2473 2797 2738	135 765 1399 2191 2439 3042 3425 3739 3265 2479	169 630 2006 2770 3217 3922 4713 4900 4453	332 861 1348 2259 2727 3115 3641 3654 3223
SARATOGA					CANADA			
1 2 3 4 5 6 7 8 9 10 11 12	 665 1424 2363 4090 4868 4599 6121 6271 6377	1066 1865 3369 3714 4459 5447 5449 5691 5771 5884	1065 1345 2784 3872 4478 5193 4791 5935 6822 6044	1065 1292 1598 3316 4342 5169 4946 5915 6288 6101	 397 1354 1817 4061 4560 4910 5904 5874 6036	718 1136 2859 3004 4211 4676 5115 5627 5344 5092	373 987 1482 2885 3785 3957 4319 5549 5402 4841	545 840 1898 2569 4019 4397 4781 5693 5540 5323

PER CENT DRY MATTER HAY GROWTH CURVES

Cut No.	151	157	162	Mean	151	157	162	Mean
VERNAL					DUPUITS	· .	·	
1 2 3 4 5 6 7 8 9 10 11 12	39.0 17.1 17.1 17.4 18.2 18.2 20.5 21.9 23.8 26.7 25.4 27.2	21.8 19.6 20.4 20.2 21.7 21.3 21.3 22.5 26.0 27.2 28.2 30.4	19.9 18.0 17.9 20.8 18.1 19.8 20.4 25.2 27.4 30.7 32.0 31.8	26.9 18.2 18.5 19.5 19.3 19.8 20.7 23.2 25.7 28.2 28.5 29.8	32.4 14.2 16.3 16.7 18.3 18.7 20.8 21.7 24.4 27.1 28.1 28.1 28.4	15.9 16.0 17.3 19.6 21.1 21.5 22.4 22.1 27.2 28.9 28.6 29.2	18.7 16.8 16.1 20.3 18.4 19.6 20.4 24.8 29.2 29.9 35.1 31.5	22.3 15.7 16.6 18.9 19.3 19.9 21.2 22.9 26.9 28.6 30.6 29.7
CLIMAX					ESSEX			
1 2 3 4 5 6 7 8 9 10 11 12	37.9 21.1 21.9 22.5 20.9 20.2 21.2 24.6 29.0 34.6 36.5 39.7	19.9 20.5 20.2 19.9 21.7 21.3 24.9 28.0 36.4 37.7 41.8 41.7	24.3 21.1 19.7 21.8 18.7 20.4 25.3 32.6 42.2 39.8 42.9	27.4 20.9 20.6 21.4 20.4 20.1 22.2 26.0 32.7 38.2 39.4 41.4	38.4 22.8 23.2 24.6 22.8 19.9 20.6 22.5 24.6 30.9 32.7 36.6	20.9 22.1 22.2 21.6 22.3 20.9 22.1 25.1 31.1 34.3 38.5 38.8	26.4 22.9 21.9 25.1 20.0 19.1 20.1 24.4 31.8 38.6 37.3 40.3	28.6 22.4 23.8 21.7 20.0 20.9 24.0 29.2 34.6 36.2 38.6

PER CENT DRY MATTER HAY GROWTH CURVES

Cut No.	151	157	162	Mean	151	157	162	Mean
FRODE					OTTAWA	·	• .	
1 2 3 4 5 6 7 8 9 10 11 12	37.8 19.3 20.8 22.1 22.1 22.9 25.7 28.4 32.1 35.5 35.3 35.1	16.2 17.7 18.1 19.5 23.2 23.3 27.8 30.8 35.8 38.8 41.8 41.7	21.5 19.0 18.3 21.7 19.9 21.2 22.9 27.3 31.4 37.8 37.4 35.8	25.2 18.7 19.1 21.1 21.7 22.5 25.5 28.8 33.1 37.4 38.2 37.5	48.7 20.9 20.0 22.1 21.2 20.7 23.1 26.1 29.2 32.4 33.4 31.0	18.0 17.5 18.6 19.1 21.7 21.2 24.2 27.1 33.0 34.3 36.7 33.7	21.4 18.1 17.6 20.3 16.9 18.2 19.7 25.6 33.3 41.0 39.6 38.9	29.4 18.8 18.7 20.5 19.9 20.0 22.3 26.3 31.8 35.9 36.6 34.5
SARATOGA					CANADA			
1 2 3 4 5 6 7 8 9 10 11 12	31.0 20.2 20.4 21.7 22.5 23.4 28.8 32.9 38.2 40.8 44.1 44.2	19.6 19.0 20.1 22.3 25.8 28.2 33.0 36.7 40.6 41.8 45.1 44.9	22.8 18.4 18.5 20.1 19.0 22.4 24.3 51.3 36.8 44.1 43.4 47.3	24.5 19.2 19.7 21.4 22.4 24.7 28.7 33.6 38.5 42.2 44.2 45.5	31.6 20.1 21.1 22.3 22.4 23.3 27.7 31.6 35.0 39.8 41.6 43.3	20.4 20.9 20.2 21.7 22.9 23.8 28.9 33.4 36.8 37.9 42.3 43.9	24.3 19.9 20.0 23.1 19.4 20.6 23.3 30.1 36.9 42.7 41.8 44.2	25.4 20.3 20.4 22.4 21.6 22.6 26.6 31.7 36.2 40.1 41.9 43.8

HEIGHTS IN CMS. HAY GROWTH CURVES

Cut No.	1961	1962	<u>1963</u>	Mean	1961	1962	1963	Mean
VERNAL					DUPUITS			
1 2 3 4 5 6 7 8 9 10 11 12	7 19 25 35 47 67 75 88 88 92 100 112	17 20 38 51 62 75 93 101 96 101 106 98	10 16 23 28 45 66 71 77 84 93 96 96	11.3 18.3 28.7 38.0 51.3 69.3 79.7 88.7 89.3 95.3 100.6 102.0	10 23 32 42 57 74 84 90 97 101 103 113	25 33 54 65 76 88 102 107 107 105 108 111	12 19 28 32 46 67 77 85 92 96 99 102	15.7 25.0 38.0 46.3 59.7 76.3 87.7 94.0 98.7 100.7 103.3 108.7
CLIMAX				•	ESSEX			
1 2 3 4 5 6 7 8 9 10 11 12	13 19 24 34 53 72 83 88 87 93 98 100	23 28 41 53 70 78 90 102 113 113 114 115	19 26 39 46 64 88 101 109 117 117 112 112 114	18.3 24.3 34.7 44.3 62.3 79.3 91.3 99.7 105.7 107.7 108.0 109.7	13 19 22 28 42 58 74 82 85 92 99 102	22 24 38 45 58 68 80 87 101 99 108 107	19 23 33 56 72 90 98 101 105 104 105	18.0 22.0 31.0 37.0 52.0 66.0 81.3 89.0 95.7 98.7 103.7 104.7

Cut No.	1961	1962	1963	Mean	1961	<u>1962</u>	1963	Mean
FRODE					OTTAWA			
1 2 3 4 5 6 7 8 9 10 11 12	12 22 36 55 70 77 82 84 86 93	27 34 52 64 89 107 116 116 118 119 122 121	21 26 38 46 65 89 105 116 121 122 123 121	20.0 27.3 37.7 48.7 69.7 88.7 99.3 104.7 107.0 108.3 110.3 111.7	9 16 21 25 41 55 69 73 80 84 90 105	21 25 42 53 70 89 108 109 119 115 114 121	17 23 36 42 63 87 98 113 120 120 120 120	15.7 21.3 33.0 40.0 58.0 77.0 91.7 98.3 106.3 106.3 106.3 106.3 106.3
SARATOGA					CANADA	• •		
1 2 3 4 5 6 7 8 9 10 11 12	19 29 35 49 73 92 104 108 110 115 117 120	29 35 59 71 100 117 134 134 129 132 133 139	28 38 56 61 90 115 127 133 137 136 132 135	25.3 34.0 50.0 60.3 87.7 108.0 121.7 125.0 125.3 127.7 127.3 131.3	17 24 30 41 61 84 96 99 100 102 104 109	22 26 45 53 85 100 114 114 117 116 117 115	20 26 37 46 66 91 108 118 119 119 121 118	19.7 25.3 37.3 46.7 70.7 91.7 106.0 110.3 112.0 112.3 114.0 114.0

•

HEIGHTS IN CMS. HAY GROWTH CURVES

.

The shoots of two varieties of timothy, orchardgrass and bromegrass were examined and measured at weekly intervals commencing on May 6. The purpose of this study was to more closely understand how and when these shoots grow and develop. The data presented in the tables which follow were obtained from ten shoots measured in each of three replications. Some points of interest are:

1. The study will not be repeated due to the considerable amount of time it requires.

2. <u>Timothy</u> - Climax grew faster than Essex. It produced a minimum of 5 leaves, but 1/3 of its shoots had 6 leaves. Essex had only 4 leaves with $\frac{1}{2}$ of its shoots producing 5. The lowest leaf turned brown on all timothy shoots by June 3, and $\frac{1}{4}$ of the second leaves turned brown.

The leaf blades and sheaths of the first 4 leaves grew throughout the sampling period, more than doubling their length. All sheath lengths were the same, blade lengths were longer on the middle leaves. The upper sheaths and blades grew their full lengths the week they appeared.

The growing point of both varieties showed above the surface of the soil the same week (May 27). The earlier maturing Climax, however, grew at a faster rate. Climax shoot weights were heavier throughout than Essex, had a higher leaf weight but a lower leaf percentage than Essex.

3. Orchardgrass - The Frode variety grew faster than Ottawa 100. Both varieties produced a minimum of 3 leaves per shoot with 3/4 of the shoots having 4 leaves, $\frac{1}{4}$ with 5. The lower leaf turned brown by heading time but only $\frac{1}{4}$ of the second leaves turned brown.

The leaf sheaths and blades of the lower 3 leaves grew throughout the period and tripled their lengths. The upper sheaths and blades grew their entire length during the week they appeared.

The growing point of both varieties showed above ground at the same time, Frode growing at a faster rate. Frode had the higher percentage of vegetative shoots. The shoot weights of the two varieties were similar.

4. <u>Bromegrass</u> - Saratoga bromegrass shoots were longer throughout than Canada. All shoots of this variety had 6 leaves, 2/3 had 7, 1/5 had 8 and a few 9 or 10. Canada brome shoots all developed 5 leaves, 4/5 had 6, 1/4 had the maximum number 7. By June 3, all lower leaves had turned brown. Later, 4/5 of leaves 2 and 1/3 of leaves 3 turned brown.

The lower two sheaths doubled their lengths, the next two increased by 50 per cent, but again as in the other species the upper sheaths and blades completed their growth the week they appeared. All sheaths were the same length except the short lower one. The blade lengths of the lower 4 leaves increased their lengths by 50 per cent all occurring before the end of May. The longest leaves were in the middle of the plant.

The growing point of both Saratoga and Canada appeared above the soil on May 21. Saratoga grew faster than Canada but both headed on the same date. Saratoga had 20 per cent sterile shoots, Canada, 3 per cent. The individual shoot weight of Saratoga was considerably heavier than Canada throughout. Its leaf weight was higher but leaf percentage the same.

GRASS SHOOT GROWTH ABOVE GROUND - 1963

	Shoot	Leaf	Height Growing	No Leaves	No Blades	Leaf 1*	Leaf 2	Leaf 3	Leaf 4	Leaf 5	Leaf 6
Date	Length	at Tip	Point	Exposed	Exposed	ъъ. В. К.	ы. Б. М. В. Г.	S L B W B L	S L B W B L	S.L. B.W.	S.L. B.W. B.L.
CLIMAX !	FIMOTHY			<u> </u>		Congress of the state of the st					— <u></u>
May 6 13 21 27	16 22 31 38	3.7 3.0 3.6 4.0	B*** B B 2	5.1 4.3 4.7 4.8	3.1 2.8 3.1 3.4	3 - 7 4 6 9 4 6 10 4 6 10	3 - 8 5 7 11 6 7 13 7 7 13	4 - 10 6 7 14 10 7 17 12 7 19	5 - 12 8 9 15 13 8 21 14 8 24		
June 3 10 17 24	55 78 87 82	4.3 4.4 4.2 5.1	13 37 51 49	5.5 5.7 5.6 5.4	4.2 4.8 5.2 5.3	7713 10816 12720 Brown	10 8 17 12 8 20 15 8 27 12 7 26	12 8 21 14 8 27 14 8 30 11 7 25	15 8 26 14 8 29 12 8 27 11 8 23	15 9 32 14 9 27 12 8 19 11 7 13	16 10 24 11 7 12 13 5 6
Per cent	t of Shoc	ots Exami	ned								
May 6 13 21 27			100B 100B 100B 50B			100 100 100 100	100 90 100 100	77 60 83 97	23 10 23 40		
June 3 10 17 24			100A 100A 100A 80H			93Br 73Br 77Br 100Br	 27Br 13Br 13Br 33Br 	100 100 100 100	93 100 100 100	27 67 83 97	17 37 37
*	S.L	Sheath I	length cm	s.; B.W.	- Blade w	ridth mms.;	B.L Bl	ade length	s cms.		

- Below soil surface; H - Headed ** В

- Brown leaves. *** Br

GRASS SHOOT GROWTH ABOVE GROUND - 1963

Date	Shoot Length	Leaf at Tip	Height Gròwing Point	No Leaves Exposed	No Blades Exposed	Leaf 1* i M i o m m	Leaf 2 H M H ທ M M	Leaf 3 H M H S M M	Leaf 4 H M H M M M	Leaf 5 ப்தப் லம் ம	Leaf 6 i x i o m m
ESSEX T	IMOTHY										
May 6 13 21 27	15 18 27 35	2.8 2.9 3.1 3.7	B** B B 1	4.3 4.1 3.9 4.4	2.6 2.5 2.5 3.1	3 - 7 3 6 9 5 5 10 4 6 10	4 - 7 4 6 9 8 6 14 7 7 14	4 - 9 5711 9617 11719	5 - 10 6 7 13 11 7 19		
June 3 10 17 24	43 60 77 67	3.8 3.9 3.7 4.0	6 22 36 36	4.8 5.1 4.9 5.1	3.6 3.9 4.1 4.4	5 7 11 9 7 15 12 6 22 Brown	8715 12720 14728 11622	12 7 20 13 8 24 13 8 30 13 7 23	13 7 26 16 9 26 14 9 29 11 7 21	11 7 21 13 8 26 11 8 20 12 7 17	14 9 12 12 6 8
Per cent	t of Shoo	ts Exami	ned								
May 6 13 21 27			100B 100B 100B 50B			100 100 100 100	90 83 100 100	57 43 50 93	17 20 17		
June 3 10 17 24			13B 100A 100A 100A			67Br 87Br 60Br 100Br	7Br 17Br 10Br 23Br	97 97 100 100	57 80 70 87	7 17 33 57	7 13

* S.L. - Sheath length cms.; B.W. - Blade width mms.; B.L. - Blade lengths cms.

** B - Below soil surface; H - headed

*** Br - Brown leaves.

19

GRASS SHOOT GROWTH ABOVE GROUND - 1963

Date	Shoot Length	Leaf at Tip	Height Growing Point	No Leaves Exposed	No Blades Exposed	Leaf 1*	Leaf 2 I X I M M	Leaf 3 T M H S M M	Leaf 4 H M H S M M	Leaf 5 H M H S M M	Leaf 6 I.M. I. M. M. M.
FRODE OR	CHARDGRAS	S									
May 6 13 21 27	19 24 37 38	2.8 2.5 2.8 3.0	B*** B 5 8	3.8 3.9 4.3 3.7	2.2 2.1 2.4 2.5	3 - 9 4 7 10 6 8 12 6 8 12	5 - 11 7 9 14 11 8 18 12 8 18	6 - 12 8 8 16 12 8 20 14 9 22			
June 3	58	3.7	19	4.5	4.1	7813	13 9 18	16 9 23	14 8 23	14 7 21	14714
10 17	70 86	3.9 3.9	22 35	4.4 4.7	3.9 4.1	8914 9915	14 8 22 17 8 28	15 8 29 17 8 35	14 7 25 13 8 26	15 7 18 14 7 20	16 6 15
Per cent	of Shoot	s Examin	led								
May 6 13 21 27			100B** 100B 50B 47B			100 100 100 100	93 87 97 97	27 20 40 5 0			
June 3			30B;30H			70Br₩		83	70	43	10
10 17			37B ; 40H 33B ; 43H			93Br 93Br	20Br 30Br	83 90	53 63	37 43	10
* S ** B *** B	- Bel		gth cms.; surface; es.		Blade widt Headed	n mms.; B	.L Blade	e length c	ms.		

36

GRASS SHOOT GROWTH ABOVE GROUND - 1963

	Shoot Length	Leaf at Tip	Height Gròwing Point	No Ieaves Exposed	No Blades Exposed	Leaf l* i * i o m m	Leaf 2 INI MMM	Leaf 3 i x i o m m	Leaf 4 H X H M M M	Leaf 5 H X H M M M	Leaf 6 H M H M M M
OTTAWA 1	LOO ORCH	IARDGRASS									
13 21	16 21 30 35	2.5 2.8 2.9 3.1	B*** B 1 2	3.8 4.2 4.3 4.2	2.1 2.2 2.5 2.4	3 - 8 4 7 9 5 8 11 6 8 12	4 - 10 6 8 12 9 8 16 10 8 17	5 - 10 7 9 14 11 8 20 13 9 20	· · · .		
June 3 10 17		3.8 4.3 4.2	13 11 6	4.8 4.8 4.3	3.6 4.2 4.0	7713 10820 11720	12 8 17 14 8 23 19 8 26	16 8 25 15 8 29 17 9 31	16 8 29 16 8 28 17 8 30	16 8 30 16 8 26 15 7 18	14 6 18
Per_cent	t of Sho	ots Exami	.ned								
May 6 13 21 27			100B*** 100B 87B 53B			100 100 100 100	83 97 100 97	27 20 43 47			
June 3 10 17			37B;3H 33B;60H 20B;77H			63Br*** 63Br 67Br	* 100 100 18Br	93 90 90	60 67 77	7 33 23	7
* S. ** B		neath lengelow soil		B.W Bl H - He		ms.; B.L	Blade len	gth cms.			

*** Br --Brown leaves.

GRASS SHOOT GROWTH ABOVE GROUND - 1963

Date	Shoot Length	Leaf at Tip	Height Growing Point	No Leaves Exposed	No Blades Exposed	leaf l* i × i o m m	Leaf 2 H M H S M M	Leaf 3 I M I S M M	Leaf 4 T M H S M M	Leaf 5 H X H N M M	Leaf 6 I M I V M M	Leaf 7 H M H M M M
CAMADA	A BROMEG	RASS										
May 6 13 21 21	3 27 1 38	3.9 3.2 3.4 3.9	В*** В 3 7	4.2 4.8 4.8 5.2	2.6 3.0 2.9 3.6	4 10 4 6 11 5 8 14 5 9 13	5 13 6 8 14 9 9 18 8 10 16	7 15 8 9 16 11 10 22 14 10 20	11 11 18 11 8 21 11 10 23	11 10 17 10 10 21		
June 3 10 17	18 C	5.l H H	26 Н Н	6.2 5.6 6.2	5.3 5.5 6.1	5 11 17 6 10 16 Brown	10 9 17 10 10 18 10 9 15	13 10 21 12 11 22 12 10 21	13 10 24 13 11 24 13 10 24	13 9 25 14 10 22 13 9 23	13 7 22 13 10 22 13 7 20	15 3 22 11 6 18
Per ce	ent of S	h o ots Ex	amined									
May 6 13 21 27 June 3 10	3 L 7 3 O		100B** 100B 27B 100A 60H 100H 3 Steri	le		100 100 100 100 93Br*** 90Br 100Br	100 100 100 4 53Br 83Br	: 6) 77 77 93 100 13Br 30Br	20 17 47 100 100	3 73 90 100	37 47 83	13 27

* S.L. - Sheath length cms.; B.W. - Blade width mms.; B.L. - Blade length cms.
 ** B - Below soil surface; H - Headed

*** Br - Brown leaves.

GRASS SHOOT GROWTH ABOVE GROUND - 1963

Date	Shoot Lgth.	Leaf at Tip		No Leaves Exposed	No Blades Exposed	Leaf 1* H N H O M M	Leaf 2 H M H S M M	Leaf 3 ⊣ ౫ ⊣ ∽ ฅ ๓	Leaf 4 H M H S M M	Leaf 5 H X H M M M	Leaf 6 H M H M M	Leaf 7 IN I MM M	НЗ Н	eaf 9 L i x i v m m	eaf 10 പെട്ടപ് ഗനന
SARAT	OGA BRO	MEGRAS	S												
5-6 13 21 27	28 31 50 60	3.6 3.5 3.9 4.1	B** B 8 16	5.3 5.1 5.3 5.3	3.3 3.2 3.6 3.6	5 13 4 7 12 6 9 16 9 11 19	6 15 6 8 15 10 10 20 14 12 23	8 18 10 10 19 14 11 23 16 12 26	8 20 12 11 21 17 12 28 19 13 26	11 12 21 11 13 28 18 12 22					
6-3 10 17	83 100 104	6.0 Н Н	31 H H	7.1 6.8 7.1	6.6 6.7 6.9	Brown Brown 7 10 19	12 10 19 13 12 21 12 9 21	15 11 22 14 12 25 13 10 24	16 12 25 15 13 28 13 11 25	15 12 28 15 12 29 13 10 26	15 11 27 15 10 26 13 9 24	14 8 22 14 9 24 12 8 20	14 5 16 12 9 21 1	.0923	159 27
Per c	ent of	Shoots	Examir	ned											
5-6 13 21 27			100B 100B 100A 100A			100 100 100 100	100 100 100 100	90 87 100 100	37 33 47 57	3 10 3					
6-3 10 17	:		80H 100H 20 ste	erile		100Br 100Br 93Br	37Br 67Br 77Br	100 17Br 30Br	100 3Br 100	100 100 100	97 97 90	60 53 67	17 20	7	3

S.L. - Sheath length cms.; B.W. - Blade width mms.; B.L. - Blade length cms. ×

** B - Below soil surface; H - Headed

*** Br - Brown leaves.

GPASS SHOOT GROWTH ABOVE GROUND - 1963

Weight of 10 Shoots in Grams

Date	% Leaf	Blade Weight	Stem <u>Weight</u>	Total <u>Weight</u>	% Leaf	Blade Weight	Stem Weight	Total Weight
CLIMAX	TIMOTHY				ESSEX TIMOTHY			
May 6 13 21 27 June 3 10 17	80 66 47	3.16 3.88 3.89	0.80 2.01 4.38	1.49 1.64 1.90 2.84 3.96 5.89 8.27	84 66 61	2.40 2.27 3.31	0.44 1.17 2.14	1.00 1.16 1.49 2.52 2.84 3.44 5.45
FRODE (ORCHARDGRA	<u>35</u>			OTTAWA 100 ORCH	ARDGRASS		
May 6 13 21 27 June 3 10	87 58 55	2.34 3.03 2.63	0.34 2.22 2.19	0.98 1.88 2.08 2.68 5.25 4.82	96 73 60	2.42 2.97 3.19	0.09 1.12 2.15	0.94 1.16 2.02 2.51 4.09 5.35
SARATO	GA BROMEGR	<u>ilss</u>			CANADA BROMEGRA	SS		
May 6 13 21 27 June 3 10		6.87 5.77 7.71	1.78 6.86 9.43	3.55 4.09 5.90 8.65 12.63 17.14	87 60 45	3.90 4. 35 4.62	0.57 2.89 5.56	1.82 2.90 3.97 4.47 7.25 10.18

CLIMATOLOGICAL DATA FROM FORAGE GROWTH CURVE EXPERIMENT

Ontario Research Foundation Department of Physiography

Water Use

On the enclosed tables and graphs is information on the amount of water used by various species of forage crops grown in the Growth Curve experiment conducted in 1961, 1962, and 1963. Water use was determined from rainfall and soil moisture determinations - core samples (0-6") and neutron readings* (6" to 48"). Estimates were made in the early part of the season using Thornthwaite's P.E. method.

Accumulated rainfall is plotted in addition to the accumulated water use curves and illustrates the loss of water to the water table right up to early June in 1961 and late May 1963. In 1962, little, if any, water was lost to the water table after the start of growth.

In late April and throughout May the rate of water use was much greater in 1962 than in 1961 and 1963, in fact twice as much water was used by May 10th, 1962 as in either of the other two years. By the first of June, 1962 approximately 5" of water had been transpired compared to around 3" in 1961 and 1963. From June 1st to 20th, the rates of use were quite comparable in all three years (.12 to .14 inches per day).

From June 18th until early July the rate of use was much less (.12" per day) in 1962 than in the other two years (0.20"/day in 1961 and 0.26"/day in 1963). There was not as much variability from year to year in the water used during the last three weeks of the Hay Growth Curve (approximately 2.4" in 1961, 2.6" in 1962, and 3" in 1963). Brome grass transpired slightly more water than alfalfa in 1962 and 1963 during the last two weeks. This could have been due to the fact that rainfall during this period (July 10-24) came after a prolonged dry spell in 1962 and 1963 and the grass was more efficient in using this rain water because of a higher proportion of roots near the surface.

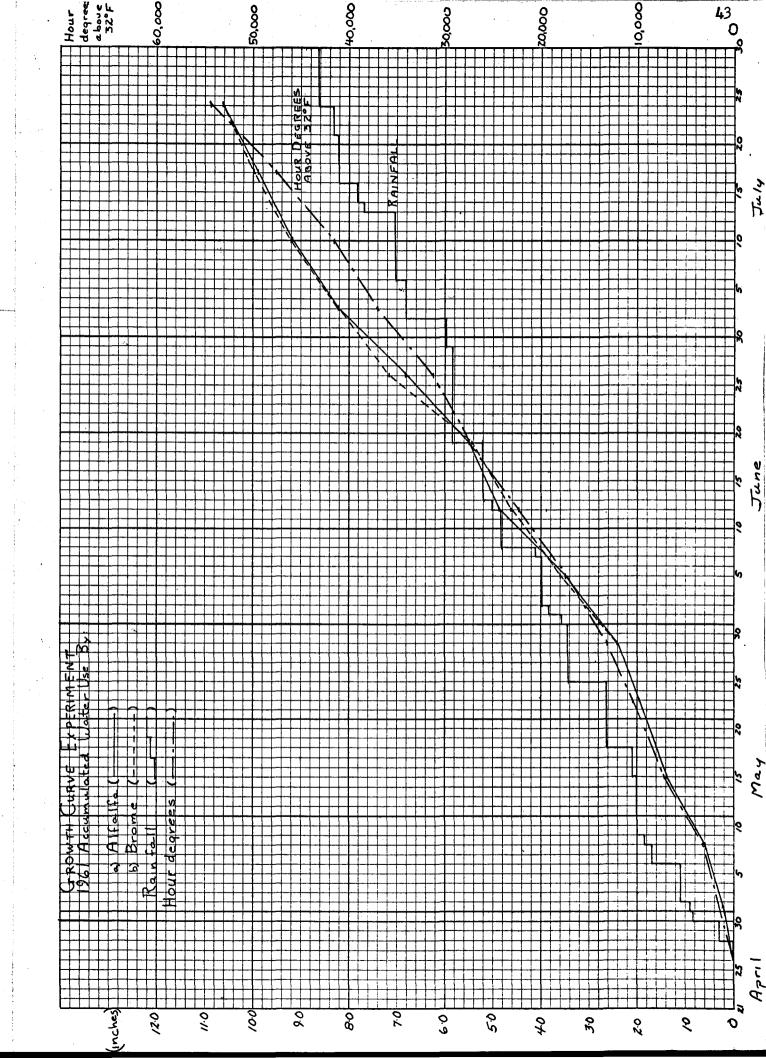
The fact that the total use was the least in 1961 and the most in 1963 is a bit hard to explain, since rainfall distribution was near perfect in 1961 and anything but perfect in 1963. Of course stored soil moisture and the water table supplied water right up to the time of rainfall on July 14th, 1963 and the demand was slightly higher in 1963 than in 1961, (shown by the "hour-degree" accumulation curves). Thus if the forage removed the stored soil moisture as efficiently as the rain-water, then it is natural that the water use would be slightly higher in 1961.

However, in 1962, the demand was greater than in either of the other two years and the total use was slightly less than in 1963. The big difference being in the June 18th to July 2nd period. Again the stored soil moisture and the water table supplied the water in 1963, but the water table was likely too low in 1962 to supply any capillary water to the roots.

It is possible that lateral movement of water from the water table

* Neutron meter supplied by the Soil Science Department.

1961 GROWTH CURVE EXPERIMENT

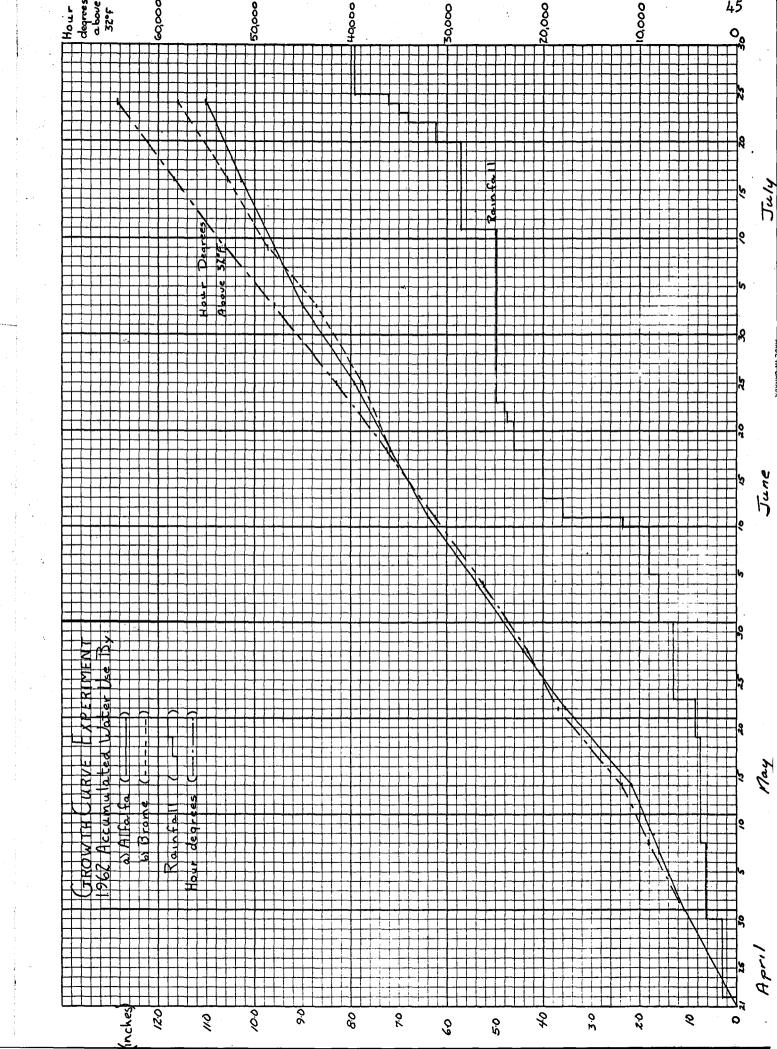

Accumulated Water Use By

Period	Alfalfa	Brome
April 26 to May 1	0.20	0.20
May 8	0.60	0.60
May 15	1.37	1.37
May 23	1.95	1.95
May 29	2.43	2.43
June 5	3.49	3.59
June 12	4.87	4.65
June 19	5.50	5.46
June 26	6.85	7.16
July 3	8.27	8.19
July 10	9.17	9.22
July 17	9.91	9.97
July 24	10.63	10.65

Ĵ

Ę

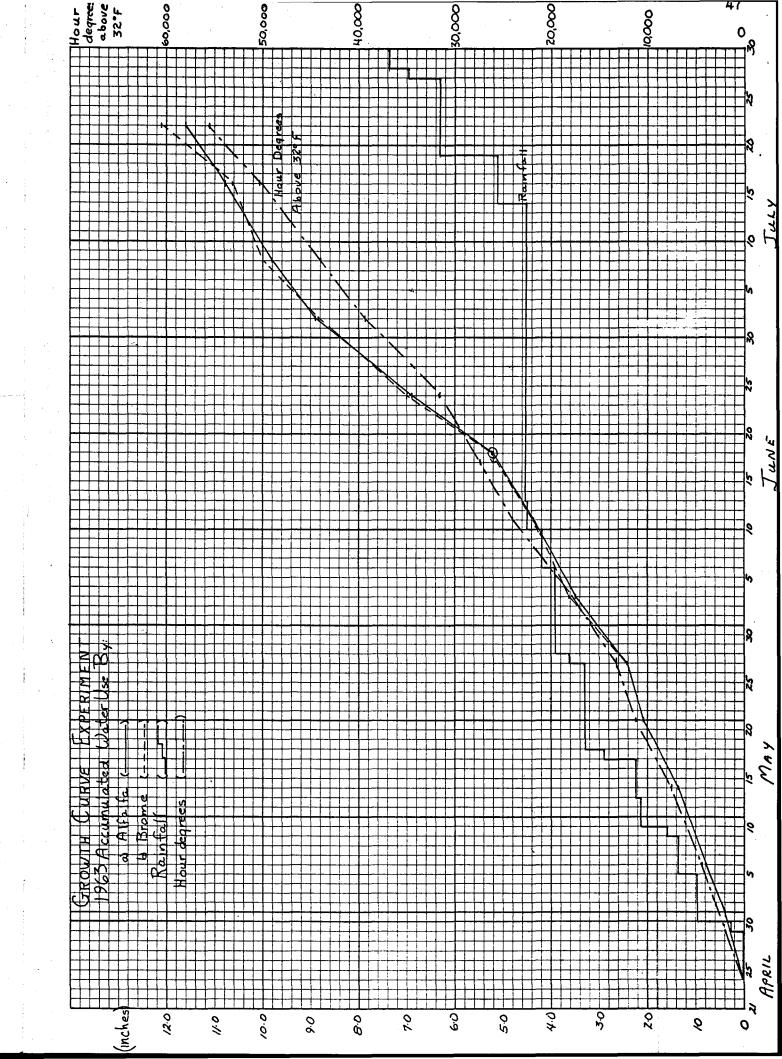
Î


1962 GROWTH CURVE EXPERIMENT

Accumulated Water Use By

ļ

Period	Alfalfa	Brome	Orchard
April 21 to May l	1.07	1.07	1.07
May 7	1.60	1.60	1.60
May 14	2.16	2.16	2.16
May 22	3.54	3.54	3.54
May 28	4.45	4.44	4.49
June 4	5.37	5.36	5.41
June 1	L 6.40	6.37	6.16
June 18	3 7.16	7.13	6.92
June 2	5 7.93	7.75	7.84
July 3	8.99	8.73	8.55
July 9	9.59	9.74	9.12
July 10	6 10.29	10.56	9.98
July 2	4 11.04	11.62	10.50


.

1963 GROWTH CURVE EXPERIMENT

Accumulated Water Use By

Period	Alfalfa	Brome	Orchard	Timothy
April 24 to May 1	0.38	0.38	0.38	0.38
May 6	0.77	0.77	0.77	0.77
May 13	1.34	1.34	1.34	1.34
May 21	2.08	2.08	2.08	2.08
May 27	2.45	2.45	2.45	2.45
June 3	3.50	3.66	3.61	3.59
June 11	4.36	4.36	4.87	4.05
June 17	5.19	5.24	5.96	4.03
June 24	6.90	7.00	7.73	6.53
July 2	8.92	8.84	9.43	8.35
July 8	9.82	10.00	10.27	9.14
July 16	10.77	10.66	11.14	9.74
July 22	11.60	12.12	11.82	10.53

continued into late June in 1963 and the moisture readings would show this loss as well as the water used by transpiration. If this is the case then the total use as shown for the June 18th to July 2nd period is too high and total use in 1963 might be lower than that in 1962.

The differences in total water use were not large and it is doubtful if there was a significant difference in total use among years. However, there is no doubt there were significant differences in water use for short periods as pointed out above.

"Hour-degree" Accumulations

Accumulation of hour-degrees above 32°F. from the date of the start of growth are shown in the attached figures along with accumulated water use and rainfall. Temperatures for these accumulations were those recorded hourly just below the crop surface, i.e., temperatures of the air above the soil surface and within the crop canopy.

It is seen that these temperature accumulations run quite parallel to the water use figures up to the middle of June, then fall below in 1961 and 1963 and go above in 1962. Apparently the water supply was not sufficient to keep up with the demand in 1962, but remained adequate in both 1961 and 1963.

The "hour-degree" totals to the end of the hay growth curve were about the same in 1961 and 1963 (54,000 to 55,000), but much higher than this in 1962 (64,000). About one-third of this difference was in the "hour-degrees" accumulated to April 30th and most of the remainder up to May 31st. Thus most of the difference in growth and dry matter production among the 3 years should have occurred by early June. In fact moisture use figures indicate that more forage should have been produced from June 1st to July 24th in 1961 and 1963 than 1962 and the reverse in April and May according to "hour-degree" accumulations.

Day-degree Accumulations to Flowering and Heading Dates

Hourly temperatures of the air within the forage canopy were averaged for each day and the average day-degrees above 32°F. accumulated from the start of growth in the spring to the date that 50% of the plants had started to flower of alfalfa, timothy, orchard and brome grass. These accumulations are shown in the following table, along with the dates of heading and flowering of each variety.

These totals were very consistent from year to year for the alfalfa varieties and Frode orchard grass, but high in 1962 for the brome varieties, Ottawa orchard and Essex timothy. A delayed heading date for Climax timothy in 1963 makes it similar to the 1962 figure, however it is likely both figures are high as Climax should head out earlier than Essex.

The fact that the totals for the grasses are nearly all too high in 1962 indicates that some of the high daytime temperatures were beyond the optimum for development of these grasses as there were more high temperatures during this period in 1962 than in the other two years.

> D.M. Brown Research Scientist

	/ -		10/0		1963	
	1961 April 26		1962 April 21		April 24	to
Saratoga	June 4	710	May 25	854	June 2	726
Canadian	June 5	744	May 26	875	June 3	760
Frode	June 4	710	May 23	805	June 4	794
Ottawa	June 8	828	May 30	993	June 6	861
Climax	June 19	1148	June \mathfrak{U}_{4}	1393	June 26	1407
Essex	June 25	1290	June 17	1497	June 22	1273
Dupuits	June 23	1243	June 10	1283	June 24	1336
Vernal	June 27	1349	June 12	1340	June 26	1407

Heading and flowering dates and accumulated day-degrees above 32°F from start of growth to these dates for 8 varieties of forage

.

TOTAL HOUR DEGREES ABOVE 32°F FOR FORAGE GROWTH (1961 EXPERIMENT)

From	То	Total Hour Degrees	Accumulated Hour Degrees
April 26	May 8	3186	3186
May 8	May 15	3999	7185
May 15	May 23	3281	10466
May 23	May 29	2615	13081
May 29	June 5	4293	17374
June 5	June 12	5023	22397
June 12	June 19	4755	27152
June 19	June 26	4105	31257
June 26	July 3	5748	37005
July 3	July 10	4625	41630
July 10	July 17	6069	47699
July 17	July 24	6629	54328

TOTAL HOUR DEGREES ABOVE 32°F FOR FORAGE GROWTH GROWTH (1962 EXPERIMENT)

From	To	Total Hour Degrees	Accumulated Hour Degrees
April 21	May 7	8917	8917
May 7	May 14	2858	11775
May 14	May 22	6643	18418
May 22	May 28	3335	21753
May 28	June 4	4557	26310
June 4	June 11	4924	31234
June 11	June 18	5038	36272
June 18	June 25	5250	41522
June 25	July 3	6445	47967
July 3	July 9	5088	53055
July 9	July 16	5327	58382
July 16	July 24	5913	64295

TOTAL HOUR DEGREES ABOVE 32°F

FOR FORAGE GROWTH (1963 EXPERIMENT)

From	To	To b al Hour Degrees	Accumulated Hour Degrees
April 24	May 6	4314	4,314
May 6	May 13	3114	7,428
May 13	May 21	3760	11,188
May 21	May 27	2057	13,245
May 27	June 3	4553	17,798
June 3	June 11	6173	23,971
June 11	June 17	3259	27,230
June 17	June 24	4393	31,623
June 24	July 2	7714	39,337
July 2	July 8	4647	43,984
July 8	July 15	6384	50,368
July 15	July 24	4976	55,344

51

- Purpose: To determine the effect of four row widths and a plant blocking upon the yield of Vernal alfalfa.
- Procedure: Alfalfa grown in 7, 14, 21, and 28 inch row widths with each width in solid and a 14 inch blocking within the row.
- Design: Split plot, six replications. Main plots blocking, sub plots row widths.
- Plot Size: Approximately 12 feet long.

Row Width	No.Seeded	No.Harvested
7 inch	9	5
14 "	5	3
21 "	4	2
28 "	3	1

Data Collected:

- 1. Yield dry matter at first flower
- 2. Per cent leaf
- 3. Plant height
- 4. No. stems per unit area
- 5. Stem diameter
- 6. Stand persistence rating
- 7. Per cent protein
- 8. Per cent D.D.M.
- 9. Light readings
- Main plots blocked in 14" spacing to the number of plants per two linear inches of row.
 Sub plots - seeded at number of seeds per foot of row, that is
 - seeded using a Planet Jr. calibrated to sow 10 lbs. per acre in 7" rows.
- First Flower all plots cut when first scatter of bloom appear on the crop.
- Results:
- 1. The data collected in the year of seeding are shown in the table. Test established was excellent.
- 2. In the first cutting, the rows seeded solid produced higher yields, taller plants and more yellow leaves. Blocking the plants reduced yields of dry matter by approximately 50 per cent.
- 3. In the second cutting, the highest yield was again obtained from the solid rows. A 14" row spacing in both solid and blocked rows gave the best yield. 28" rows gave very low production.
- 4. At the narrow row spacings, the alfalfa was slightly taller in the solid than in the blocked rows, but the blocked alfalfa had stems which were considerably coarser.
- 5. The solid rows produced stems considerably lighter in weight with a lower percentage of leaves than the blocked rows.
- 6. Increasing the row spacing increased the stem weight and per cent leaf in the solid rows but increased only the stem weight of the two narrow spacings in the blocked rows.
- 7. In total seasonal yield, the solid rows provided more dry matter yield with the 14" spacing being superior.

ALFALFA SPACING TEST (1963) TEST 165

Seeded: April 29, 1963

Location: C 2-3

			- July 9		الدار والمساد التي وتواند من المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع ا	t - August				_	
	Yield D.M.	Plant Height	Height of Yellow	Yield D.M.	Plant Height	Height of Yellow	No.Stems Per Foot	Stem Diameter	Stem(30) Weight	Per- cent	Total Yield DM
Treatment	Lbs/Ac.	cms.	Leaf-cms.	$\underline{Lb/h}$.	Cms.	Leaf-cms.	of Row	mms.	cms.	<u>Leaf</u>	Lbs./Acre
<u>Solid Within</u> Rows											
Row Width - 7"	1735	48	23	3175	71	33	47.7	2.14	25	48	4910
14"	1727	50	14	3670	67	27	65.0	2.25	28	51	5397
21" 28"	1428 688	52 49	15 9	3092 1773	64 62	24 19	80.7 89.0	2.31 2.27	33 38	54 57	4520 2461
Mean	1395	49 50	15	2927	66	26	70.6	2.24	31	53	4322
	-277						,		y		
Blocked to 14" Spacing Within Row											
Row Width - 7"	1100	45	12	3078	68	22	29.5	2.51	45	55	4178
	813	4 <i>)</i> 46	5	3315	65	20	39.3	2.60	4) 52	56	4128
21"	576	45	3	2744	67	17	48.0	2.69	56	55	3320
28"	321	50	0	1498	63	13	54.3	2.62	56	57	1819
Mean	703	47 .	5	2658	66	12	42.8	2.61	52	56	3361

TEST 310

MIXTURE DIVERSITY TRIAL

Results

The data collected in 1963 is shown in the following tables. Some items of interest might be:

- 1. Delayed harvesting of the Vernal mixtures increased the percentage of brome by the time of medium harvest; increased the percentage of timothy by the late harvest; had no effect on the percentage of the orchard component. With DuPuits all species of grass increased some with delayed harvesting, particularly the brome.
- 2. Vernal mixtures gave higher yields in the first cut than DuPuits mixtures at the three harvest dates and had a higher percentage of grass.
- 3. Total seasonal yields were highest from the DuPuits mixtures because of their aftermath production.
- 4. DuPuits mixtures cut early produced higher yielding aftermaths than when cut at a medium or late date, which were similar in aftermath yield. The Vernal aftermaths were similar in total production regardless of when the first crop was cut for hay.
- 5. In general, bromegrass grown with Vernal or DuPuits gave the highest total yield.

MIXTURE DIVERSITY TRIAL - TEST 310

Seeded: May 17, 1961

Early Cut - June 10, 1963

Location: E-18

	Lbs. D.	M./Acre, Alfa	• · · · •	% Alfalfa	a	% Grass				
Association	June 10/63	<u>July 19/63</u>	Sept 4/63	Total	June 10	July 19	Sept 4	June 10	<u>July 19</u>	Sept 4
Vernal + Lincoln	5500	1543	2003	9046	74.4	95.8	91.8	25.6	4.2	8.2
+ Climax	4820	1772	2149	8741	94.6	98.2	94.8	5.4	1.8	5.2
+ Frode	5094	1506	2120	8720	72.1	81.1	69.4	27.9	18.9	30.6
Mean	5138	1607	2091	8836	80.3	91.7	85.3	19.7	8.3	14.7
DuPuits + Lincoln	4961	2164	2272	9397	92.6	99.0	98.5	7.4	1.0	1.5
+ Climax	4849	2217	2373	9439	95.3	98.9	95.9	4.7	1.1	4.1
+ Frode	4632	2052	2523	9207	80.9	93.3	74.4	19.1	6.7	25.6
Mean	4814	2144	2389	9348	89.6	97.1	89.6	10.4	2.9	10.4

	Lbs	. D.M. Per A	cre <u>- Alfal</u> f	Lbs. D.M. Per Acre - Grass				
Association	June 10	July 19	Sept 4	Total	June 10	July 19	Sept 4	Total
Vernal + Lincoln + Climax + Frode	4092 4560 3673	1478 1740 1221	1839 2037 1471	7409 8337 6365	1408 260 1421	65 32 285	164 112 649	1637 404 2355
Mean	4108	1480	1782	7370	1030	127	308	1465
DuPuits + Lincoln + Climax + Frode Mean	4594 4621 3747 4320	2142 2193 1915 2083	2238 2276 1877 2130	8974 9090 7539 8534	367 228 885 493	22 24 229 92	34 97 646 259	423 349 1760 844

MIXTURE DIVERSITY TRIAL - TEST 310

Seeded: May 17, 1961

Medium Cut - June 26, 1963

Location: E-18

	Lbs.		🔏 Alfalfa		% Grass					
Association	June 26/63	July 30/63	<u>Oct 11/63</u>	Total	June 26	July 30	<u>Oct 11</u>	June 26	July 30	<u>Oct 11</u>
Vernal + Lincoln	6559	2070	1788	10417	54.2	83.2	91.4	45.8	16.8	8.6
+ Climax	5259	1927	1548	8734	88.0	95.7	95.7	12.0	4.3	4.3
+ Frode	6224	2108	1757	10089	73.1	82.2	78.7	26.9	17.8	21.3
Mean	6014	2035	1698	9747	71.8	87.0	88.6	28.2	13.0	11.4
DuPuits + Lincoln	6321	2333	2020	10674	71.7	93.1	97.5	28.3	6.9	2.5
+ Climax	5259	2323	1965	9547	90.2	98.3	98.5	9.8	1.7	1.5
+ Frode	5970	2277	1955	10202	76.4	88.9	88.9	23.6	11.1	11.1
Mean	5850	2311	1980	10141	79.4	93.4	95.0	20.6	6.6	5.0

	Lbs.	D.M. Per Ad	ere - Alfalt	Lbs. D.M./Acre - Grass						
Association	June 26	July 30	<u>Oct 11</u>	Total	June 26	July 30	<u>Oct 11</u>	Total		
Vernal + Lincoln	3555	1722	1634	6911	3004	348	154	3506		
+ Climax	4628	1844	1481	795 3	631	83	67	781		
+ Frode	4550	1733	1383	7666	1674	375	374	2423		
Mean	4244	1766	1499	751 0	1770	269	198	2237		
DuPuits + Lincoln	4532	2172	1970	8674	1789	161	50	2000		
+ Climax	4744	2284	1935	8963	515	39	30	584		
+ Frode	4561	2024	1738	8 32 3	1409	253	217	1879		
Mean	4612	2160	1881	8653	1238	151	99	1488		

MIXTURE DIVERSITY TRIAL - TEST 310

Seeded: May 17, 1961

Late Cut - July 5, 1963

Location: E-18

	Lbs.		% Alfalfa	A	% Grass					
Association	July 5/63	Aug. 2/63	<u>Oct. 11/63</u>	Total	July 5	Aug. 2	<u>Oct. 11</u>	July 5	Aug. 2	<u>Oct. 11</u>
Vernal + Lincoln	6955	1758	1766	10479	55.0	90.0	79.5	45.0	10.0	20.5
+ Climax	6613	1776	1889	10278	75.6	97.5	86.2	24.4	2.5	13.8
+ Frode	6088	1799	1847	9734	71.4	83.6	73.1	28.6	16.4	26.9
Mean	6552	1778	1834	10164	67.3	90.4	79.6	32.7	9.6	20.4
DuPuits + Lincoln	6684	2263	2022	10969	58.0	95. 3	91.5	42.0	4.7	8.5
+ Climax	5541	2261	1871	9673	84.4	98.6	96.4	15.6	1.4	3.6
+ Frode	5863	2290	2112	10265	67.9	87.8	85.8	32.1	12.2	14.2
Mean	6029	2271	2002	10302	70.1	93.9	91.2	29.9	6.1	8.8

	Lbs	s. D.M. Per /	Acre - Alfali	fa	Lbs.	D.M. Per	Acre - Gra	ŜŠ
Association	July 5	Aug. 2	<u>Oct. 11</u>	Total	July 5	Aug. 2	<u>Oct. 11</u>	Total
Vernal + Lincoln + Climax + Frode	3825 4999 4347	1582 1732 1504	1404 1628 1350	6811 8359 7201	3130 1614 1741	176 44 295	362 261 497	3668 1919 2533
Mean	4390	1606	1461	7457	2162	1172	373	2707
DuPuits + Lincoln + Climax + Frode Mean	3877 4677 3981 4178	2157 2229 2011 2132	1850 1804 1812 1822	7884 8710 7804 8133	2807 864 1882 1851	106 32 279 139	172 67 300 179	3085 963 2461 2170

CONDITIONING AND RAKING TIME

TEST 172

Results

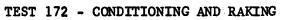
The data collected in 1963 was very similar to that obtained in previous tests and is given in the following table and graph. Some of the more significant results were:

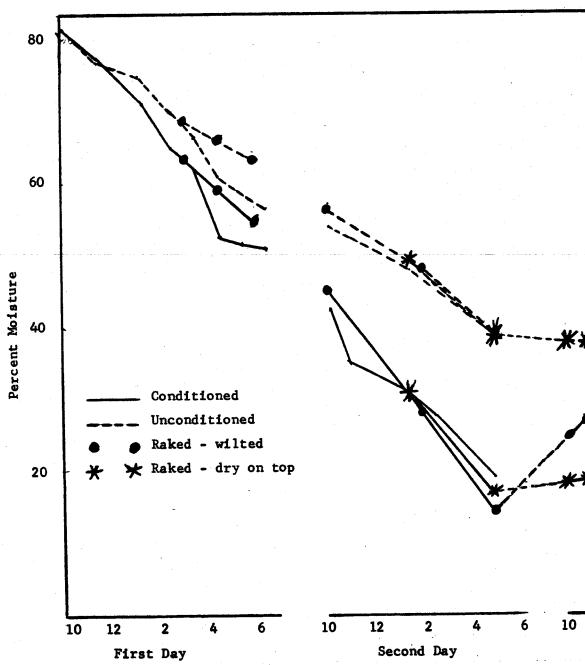
- 1. Conditioned hay was ready to bale much sooner than unconditioned.
- 2. Conditioned hay in this test, as in all previous studies, lost considerably more leaves than unconditioned hay.
- 3. Early raking did not impede the speed of drying.

.8.

- 4. Early raking had a marked effect upon reducing the amount of leaf lost.
- 5. Baling leaf loss caused by the pick-up was again very large.

TEST 172


HAY CONDITIONING AND RAKING


	<u>Per cen</u>	t Dry Mat	ter When Ready*	<u>Hours Fr</u>	om Cutti	ng When Ready*		<u>f Loss Fro</u> s. Per Acr		Per cent Leaf in
Raking <u>Treatment</u>	Raked	Baled	to Bale	Raked	Baled	to Bale	Raking	Baling	Total**	Bales_
Conditioned										• •
Wilted on top Dry on top Swath cured	35 69 81	92 92 91	78 75 Raked	5 27 31	56 56 56	29 29 31	56 372 506	661	1446	44.6 44.0 42.1
Average							311		. <u></u>	43.6
Unconditioned										
Wilted on top Dry on top Swath cured	30 53 61	84 84 85		5 27 31	56 56 56	 	0 235 360			47.4 45.5 41.9
Average							198			44.9

*

When 75 per cent dry matter or more Includes leaf loss before cutting - averaged 413 lbs./acre **

Hay cut June 25; Vernal yield 5,000 lbs./acre; 19 per cent dry matter.

.

TEST 170

BALE DRYING STUDY

Days After Stacked		icked	Sto	oked	Flat			
Baling	Cond.	Uncond.	Cond	Uncand.	Cond.	Uncond.		
Same day	71	54	71	54	71	54		
l	84*	57	74	56	70	51		
3	73	61	76	52	73	55		
6	70	59	75	62	72	64		
8	76	67	82	67		72		

* Sample taken from top bale of stack.

Many farmers bale hay tough and leave it in the field for drying in stacks, piles, etc. The data presented in the table was obtained from hay baled very tough. The speed of drying of the three bale arrangement used point to the following:

- 1. Conditioned hay dried the fastest in stooks composed of four bales.
- 2. Stacked bales did not dry any faster than bales left where they dropped from the baler.
- 3. Unconditioned hay, at the high moisture content used, dried very slowly in all arrangements tried.

PROGRESS REPORT ROUGHLAND PASTURE ASSESSMENT AND IMPROVEMENT PROJECT Crop Science Department, O.A.C. - May 5, 1964

Date of Commencement of ARDA Project: May 1963.

The scope of the project was expanded during 1963 to include the objectives: 1) location and acreages of roughland; 2) the present and potential production; 3) methods of establishing birdsfoot trefoil using chemical sod killers; 4) ecological changes in stands of trefoil; and 5) crop management techniques for maximum utilization and production. The following is a brief report outlining the studies, their locations, and observations made during 1963.

1. Locations and Acreages of Roughland

Three broad groupings of soil association were of concern in the project: 1) shallow soils (0-18" of soil over bedrock); 2) rough soils (those having steep slopes or rough topography) which may or may not contain large boulders on the soil surface and/or rock outcrops; and 3) poorly drained soils having flat topography that prevent early spring tillage.

A map is in the process of being prepared to show the location and acreages of these three soil associations. There are approximately 1.0 million acres of shallow soil, 1.3 million acres of "rough" soil, and 4.0 million acres of poorly drained soil in Ontario. Much of the shallow and "roughland" areas are in pasture and is not suitable for other crops, and some of the poorly drained soils will remain in forage.

2. Present and Potential Production

In order to assess the present and potential production from the natural herbage growing on these lands, and after they have been seeded to trefoil, it was necessary firstly to obtain testing sites and secondly, to establish trefoil plots on which fertilizers could be applied. In order to expedite this phase of the project, six of the sites established in 1963 were selected and fertilizer treatments were applied so that the potential and present production could be determined in 1964.

<u>Treatments</u>: Three rates of fertilizer, 0, 500, and 1000 pounds of 0-20-20 fertilizer were applied to trefoil and to the natural sod at each of the sites in September 1963. Three replications of each fertility treatment were used at each location.

Locations:	<u>Co-operator</u>	Township	County	Description
	Mr. M. Millhouser Mr. Webster	Lindsay Saugeen	Bruce Bruce	Shallow soil. Flat, fair-poorly. drained.
	Mr. Webster Mr. Balls Mr. Kipfer Mr. E. Ward	Saugeen Albermarle Mornington Mulmur	Bruce Bruce Perth Dufferin	Rough, hilly. Shallow, poorly drained. Gravelly, rolling. Droughty, rolling, and gravelly.

Observations: In 1963 on the shallow soils the lack of water in mid-summer restricted growth and development to some degree. In the spring of 1964, the vigour and stand of the fertilized trefoil and the natural grasses appeared to be greater than where no fertility was used. To more accurately assess the potential use of this type of land three permanent sites, Bruce, Wentworth and Victoria counties, were located and specific trials designed to assess the potential yield from the shallow soils are being established.

3. Methods of Chemical Establishment

Prior to 1963 some principles concerning chemical renovation evolved from experimental work conducted at the Crop Science Department. They are: 1) the competing grass must be removed if trefoil is to be established successfully; 2) no primary or secondary tillage is required if the competition from the sod has been removed; 3) trefoil can be broadcast on the soil surface at any time from late November to late April with equivalent success; 4) birdsfoot trefoil should be seeded alone at from 5-8 pounds per acre; 5) systemic grass herbicides such as dalapon or contact herbicides like paraquat can be used for the suppression or the killing of the grass provided they are applied to actively growing tissue.

Using these principles a renovation technique was designed and tested under a wide range of soil conditions in 1963.

Treatments:

- 1. Seed sown in March 1963
 - 2. Fertilizer applied in March 1963
 - 3. Chemicals applied in May 1963
 - a. Paraquat 1#/acre
 - b. Paraquat 2#/acre
 - c. Dalapon 5#/acre.

Locations:	<u>Co-operator</u>	Township	County
Locations:	Mr. M. Hammond	Amabel	Bruce
	Mr. E. McKay	Albemarle	Bruce
	Mr. M. Millhouser	Lindsay	Bruce
	Mr. Balls	Albemarle	Bruce
	Mr. G. Little	Greenock	Bruce
	Mr. H. Webster (2 sites)	Saugeen	Bruce
	Mr. E. Grier	Mulmur	Dufferin
	Mr. E. Ward	Mulmur	Dufferin
	Mr. Kipfer	Mornington	Petth
	Mr. C. Buchanan	Codrington	Northumberland
	Mr. McCalpine	Eldon	Victoria
	Mr. L. Graham	Euphrasia	Grey
	O.A.C. Plots	Guelph	Wellington

Observations: Plant stand counts were made in July and September of the establishing year. On 12 of the 13 locations the trefoil stand was considered to be satisfactory for production (above 5.0 plants per square foot). The remaining location had, on the average, a trefoil plant stand of below 5.0 plants per square foot and was considered a failure. At two locations it was suspected that the herbicide was applied after the trefoil had germinated with death of the seedlings resulting. The two pound rate of paraquat was considered to be in excess of that required for grass suppression. The technique as tested using dalapon or the low rate of paraquat appeared to be satisfactory for renovating rough lands. However, further refinements concerning the rate, time of application, and kind of chemical is needed, before any recommendation can be made. In 1964 a new series of trials using lower rates of paraquat and oil emulsions will be tested.

Applications of herbicide, seed and fertilizer may be difficult with conventional equipment, especially on land with steep slopes or if large boulders or rock outcrops are present. In order to overcome this, an application of granular dalapon in September 1963 followed by an application of seed and fertilizer in December were made by means of aircraft. Evaluation of this method of application will occur in 1964.

4. Ecological changes

Using the plots established as part of the methods of renovation in 1963, preliminary data were collected on the effect of grazing, weeds, grass and fertility on establishment. The data indicated that trefoil established in the natural sod in the upper Bruce Peninsula with success but not at other locations. In addition unrestricted grazing throughout the establishing year tended to reduce the plant stand and vigour of trefoil. When grazing was restricted and animals allowed in the field during August, the stand and vigor was rated as good. The presence of perennial weeds such as chicory, blueweed, etc., present not only a problem in establishing trefoil, but also after the trefoil is established. As no chemical is at present available to remove these weeds from established stands of trefoil without injuring this legume, a program of weed control must be instituted before the seeding takes place.

RATE AND METHOD OF SEEDING RAPE

- 1. Two seedings of this test were made in 1963. The first seeded on July 9 was so badly choked with weeds that a second one was made on July 31, However, a weed spray called Tordon was applied at 6 oz. per acre which gave complete control of all weeds and permitted its harvest.
- 2. The dry summer caused very light yields. In previous tests, row seedings have been outstandingly superior to broadcast seedings. In 1963 they were quite similar in both tests.
- 3. The earlier seeding gave higher yields but taller plants with smaller stems and lower percentage of leaves than the later seeding.
- 4. Although the stand was excellent in both tests, that summary data presented in the 1962 report is a better indication of yield because of the dry 1963 season.

Method I and Rate	Per Cent Lry Matter	Green Yield Ton/A	Dry Matter Yield Tons/Acre	Height in <u>Cms.</u>	Diameter of Stems in C ms.	25 Plant Dry Wgt. in Gms.	Per Cent Leaf
Seeded: Ju	uly 9, 196	3				Harvested:	<u> 0ct. 25/63</u>
Rows 2# 1 # 1½# 2 # Mean	11.3 12.2 11.9 12.1 11.9	30.4 22.9 26.7 27.8 27.0	3.48 2.79 3.21 3.41 3.22	89 86 86 87 87	1.6 1.4 1.3 1.3 1.4	1150 749 848 753 875	38.5 37.4 37.3 32.7 36.5
Broadcast 2 # 4 # 6 # Mean Gen.Mean	13.0 12.6 13.4 13.0 12.5	24.1 23.3 23.7 23.7 25.4	3.14 2.88 3.17 3.06 3.14	89 90 88 89 88	1.2 1.1 1.1 1.1 1.3	707 592 521 607 741	34.4 32.3 32.6 33.1 34.8
Seeded: July 31, 1963 Harvested: Oct. 28, 19					ct. 28, 1963		
Rows = # 1 # 1 ¹ / ₂ # 2: # Mean	11.8 11.1 11.3 12.5 11.7	21.1 22.7 23.8 24.4 23.0	2.49 2.52 2.68 3.03 2.68	78 78 77 77 78	1.9 1.7 1.5 1.4 1.6	505 349 298 227 345	44.7 42.6 42.3 40.1 42.4
Broadcast 2 # 4 # 6 # Mean	11.8 11.8 12.9 12.2	22.4 24.2 22.4 23.0	2.63 2.86 2.88 2.79	78 80 77 78	1.5 1.3 1.1 1.3	269 216 151 212	41.8 39.2 35.9 39.0

TEST 173

IN VITRO DIGESTION TECHNIQUE FOR FORAGES

The technique currently being used by the Department of Crop Science, O.A.C. is a modification of the method of Tilley and Terry (J. Brit. Grassl. Soc. 18: 104. 1963). The adaptation is much similar to that briefly outlined by Pritchard <u>et al.</u> (Can. J. Plant Sci. 43: 79. 1963). This technique involves incubation first with rumen liquor and then with acid pepsin.

Materials:

(1) <u>Forage</u>. All samples are dried in a "forced-draft" oven at 80°C. They are then ground through a hammer mill¹ equipped with a 0.8 mm. screen and stored in plastic bags.

(2) <u>Rumen liquor</u>. The rumen inoculum is a composite of that taken from three fistulated sheep. The sheep are fed a standard diet of high quality chopped hay at a level slightly below maximum intake. Sheep are fed at 8.15 a.m. and 4.45 p.m. daily. No feed is given on the morning of collection and the water pails are removed at the normal feeding time. Collection begins around 9.30 -10.00 a.m.

The ingesta is removed under vacuum into a large vacuum flask which is immersed in warm water. The ingesta is then strained through three layers of cheesecloth (wrung as dry as possible) into an insulated thermos which has been preheated with hot water. Some CO_2 is then passed into the flask to displace air from above the rumen liquor and the flask is tightly sealed. It is endeavoured to maintain the temperature of the rumen liquor at approximately 39°C.

The liquor is then taken immediately to the laboratory and transferred into a large beaker which is placed on a magnetic stirrer hot plate². CO₂ is bubbled lightly through the rumen liquor. A thermometer is also placed in the beaker and the temperature is maintained at approximately 39°C. As little time as possible should elapse between the time the ingesta is collected until the inoculations are complete.

(3) <u>Buffer</u>. The buffer is that described by McDougall (Biochem. J. 43: 99. 1948). A stock solution is prepared by dissolving

49.0 18.5			2HCO3 2HPO4,	dibasic,	anhy	7drous
2.35	gms.	NaC	1			
2.85	gms.	KCI	L			
0.20	gms.	Ca	Cl ₂ ,	anhydrous		
0.30	gms.	Mg	Cl_2 ,	anhydrous		
		11 Test 1 an -	+	liting ho	fana	1100

in l litre of water and then diluting to 5 litres before use. The buffer is equilibrated with CO_2 (for at least 20 minutes) immediately before using. This lowers the pH to approximately 6.9. The buffer may be stored for some weeks providing that it is re-equilibrated with CO_2 immediately before using.

(4) <u>Pepsin solution</u>. The pepsin solution is made by adding 2.0 gm. of 1: 10,000 pepsin powder to 1000 ml. of 0.1 N H Cl. This solution is not stable and should be made up freshly for each experiment.

Equipment:

(1) Centrifuge tubes (50 ml. capacity) are identified with a number etched into the glass with a diamond pencil. Each tube is closed with a rubber stopper which has been fitted with a gas release valve made on the principle of the Bunsen value. A short length of glass tubing is passed through a stopper so that

66

¹ Christie-Norris Model No. 7437, 8-inch size

² Gyratherin, Model No. 25-1

the lower end is about flush with the top. A rubber policeman is fitted over the projecting portion of the tubing and a 5-7 mm. slit is made parallel to the length of the tubing. This slit remains closed normally and opens under pressure to release gas from inside the tube.

(2) Centrifuge which has a rapid acceleration and deceleration to and from at least 2500 rpm and has a capacity of 16 tubes. (M.S.E. "super-magnum" centrifuge).

(3) PH meter sensitive to at least 0.05 on scale and measures the pH in the centrifuge tubes. (PH Meter 22, Radiometer).

(4) Water bath with a capacity for 12 racks (192 tubes) for operation at 39°C. (Hotpack Constant-Temperature Bath, Model No. 419).

(5) Automatic pipetting machine with a capacity of from 5 to 50 ml. for rapid dispersing of the buffer. (Brewer Automatic Pipetting Machine).

(6) CO_2 cylinder fitted with a special regulator.

Method:

The centrifuge tubes are placed systematically into 16-hole metal racks. The tubes are dried in an oven, placed in a desicator and finally weighed. Weights are recorded to the nearest 1/10,000 of a gram.

A $\frac{1}{4}$ teaspoon is used to deliver approximately 250 mgms. of forage (when dried) into each tube. The tube plus sample is then dried at 80°C for at least 48 hours. Then the second weight is recorded and the exact dry matter weight of sample calculated. A range of 180 to 300 mgms. is accepted.

Before the start of the incubation, 25 ml. of buffer is added with the automatic pipettor to each of the tubes containing the forage. The tubes are then stoppered and placed into the water bath to equilibrate the temperature. When the inoculum is prepared, each tube is removed from the bath and 5 ml. of inoculum placed in it by means of a syringe, (a holder from a Cornwall continuous pipettor is used to set the syringe to deliver a constant quantity but the continuous filling attachment is not used). Each tube is then gassed with CO2 (surface gassing only), immediately stoppered and returned to the bath.

The tubes are incubated at 39°C for 48 hours. They are shaken individually and checked for leaks three times daily. The first shaking occurs shortly after adding the rumen liquor. At the end of the fermentation period the rubber stoppers are removed from the tubes. Any residue adherring to the stoppers is transferred back into the tubes with the aid of distilled water from a wash bottle. The tubes are then placed in the refrigerator at 1°C and later removed (by racks) and centrifuged at 2500 rpm for 15 minutes. The supernatants are then decanted. Next, the residue is washed by adding distilled water, stirring, centrifuging and decanting the supernatant.

Twenty-five ml. of pepsin solution is then added by the automatic pipettor to the residue in each tube. The tubes are then stoppered and incubated for another 48 hours at 39°C. They are again shaken individually three times daily. At the end of this incubation, the tubes are centrifuged and washed as before. The tubes are next placed in an oven and dried at 80°C for at least 48 hours. At the end of the drying period, the tubes are cooled in a desicator and weighed. The dry weight of residue is then calculated. From this is subtracted the weight of residue found in the "blank" tubes (representing undigested food particles and microorganisms derived from the rumen liquor). Four "blank" tubes are included in each run. The weight of undigested residue from the tested forage is thus obtained and the dry matter digestibility calculated.

Our laboratory is equipped to handle an average of approximately 400 tubes per week. Two full-time technicians are required to maintain this capacity. At full capacity, the laboratory schedule is carried out on a twoweek basis with the rumen liquor stage of 2 separate runs begun in one week followed by the pepsin stage the following week. This is necessitated because of the time interval spent centrifuging. The large capacity of our laboratory enables forages from all main treatment comparisons to be inoculated with rumen liquor from the same batch. Replicates can be included in the same run (if space) or else confounded with runs. This eliminates the problem of using different sources of rumen liquor with possibly differing digestive efficiency. Three sets of standard forages are included in each run in quadruplicate in order to have an accurate assessment of the digestive efficiency of the particular rumen liquor and pepsin solution.

MODIFICATIONS IN TECHNIQUES

(a) <u>Elimination of moisture determination</u>. A separate sample used for moisture determination was eliminated. This cut out three weighings and thus markedly speeded up the technique. Now, after the dried centrifuge tubes are weighed, a $\frac{1}{4}$ teaspoon is used to deliver approximately 250 mgms. of forage (when dried). The tube + sample is then dried and weighed. The dry matter weight of the sample is then calculated. A range of 180-300 mgms. is accepted.

(b) Elimination of mechanical shaker. The mechanical shaker used in one incubator bath did not appear to be shaking the tubes satisfactorily. A comparison was thus made of twice daily handshaking versus twice daily mechanical shaking for fifteen minutes. The average % DDM for 32 samples each was 72.3 for mechanical shaking compared to 73.9 for handshaking. This variability was too great and thus the mechanical shaker was abandoned. It was then decided to hand shake tubes three times daily - beginning immediately after putting rumen liquor or pepsin solution in the samples.

(c) <u>Other attempts</u>. Other possibilities which appear in the literature for speeding up the procedure were investigated - no washing after rumen liquor and only 24 hours of pepsin digestion. Both attempts proved unreliable.

(d) <u>Design and standards</u>. Forage from all main treatment comparisons will be inoculated with rumen liquor from the same batch. The large capacity of our laboratory enables this. Replicates can be included in the same run (if space) or else confounded with runs. This eliminated the problem which results from using different sources of rumen liquor with possibly differing digestive efficiency.

Three sets of standard forages will still be included in each run in order to have an accurate assessment of the particular rumen liquor and other solutions used. Also, the number of "blank" (no forage added) tubes per run has been increased from two to four to more accurately determine the amount of dry matter present in the residue which represents undigested foodtperticles and microorganisms derived from the rumen liquor.

REPRODUCIBILITY OF TECHNIQUE

Three "standard" forages are included in quadruplicate in each run. Analysis of the results from 14 consecutive runs showed that, within a run, the standard error of the mean of quadruplicate measurements was ± .16 digestibility units. Between runs, the standard error of the means was ± .60. This high precision is very gratifying.

One of the "standard" forages has a known <u>in vivo</u> dry matter digestibility of 60.0 %. The average <u>in vitro</u> dry matter digestibility of this forage from 14 runs was 62.6%. Thus, our technique appears to be slightly overestimating the "true" digestibility.

LIGNIN ANALYSIS AND DEPOSITION

Preliminary investigations in this area were begun. An "ideal" method of analysis for lignin is still unavailable. However, the Sullivan (J. An. Sci. 18: 1292. 1959) technique was selected on the basis of simplicity and speed. However, it proved wholly unsatisfactory with leaf and stem portions. A critical examination of this and other methods of analysis for lignin is in order as this constituent will probably play a central role in future basic studies in forage quality.

DIGESTIBILITY OF FORAGES TREATED WITH KOH

ŧ

The possibility of treating poor quality forages with KOH in order to make the energy in them more available was investigated. Approximately 2 gns. of each ground forage was soaked in 20 ml. of 1.5% KOH for 24 hours at room temperature. The solubility in KOH of each forage was determined along with the in vitro dry matter digestibility of the remaining insoluble portion.

	Untreated	KOH Treated Insoluble Portion	% Soluble in <u>KOH</u>	
Corn Stover	62.0	80.3	22.1	
C orn Cob	47.8	69.7	19.7	
Poor Hay (G63-67)	55.0	47.8	20.4	
Soybean Stem	39.6	40.0	11.3	

The soaking in 1.5% KOH markedly increased the digestibility of the corn stover and corn cobs. The dry matter digestibility of the corn stover even after the readily soluble portion was removed was approximately 80%. However, this concentration of KOH had little effect on the poor quality hay or soybean stems used.

A subsequent study was carried out in which different amounts of 1.5% KOH were added to approximately 250 mgms. of ground corn stover. At least three determinations per treatment were carried out.

Amount of 1.5% KOH Added (ml.)	% D.D.M.
0	61.8
•25	62.2
1.0	65.6*
2.5	81.3*

* Digestibility of portion insoluble in KOH.

It was concluded that a rather high level of KOH is required to obtain a satisfactory response using this procedure.

1. Whole Plant (Test 151, 157, 162)

The in vitro dry matter digestibilities (IVD) of the whole plant material have been completed for five of the six field replications in each of the three successive years or tests. Determinations for the sixth replicate are currently being completed. Digestions were conducted on each sample in duplicate.

Very distinct trends are evident. The overall IVD within a variety remained essentially constant for the first four cuttings. Then, in late May, the digestibilities began to drop rapidly. From then until the end of each study the average rate of decline of the 8 varieties was approximately .44 IVD units per day. However, the rate of depression varied with species.

The earliest maturing species orchardgrass had the lowest digestibility on a date basis. At the later cutting dates the IVDs of orchardgrass were markedly lower than that of bromegrass or alfalfa. However, when compared on a stage of maturity basis, the picture was quite different. At the "heads emerged" stage the orchardgrass had the highest IVD of all the species studied.

Similarly, the latest maturing species, timothy, tended to have the lowest IVD on a stage of maturity basis. Also, there was a general tendency for the later maturing varieties within a species to have a higher IVD on a date basis.

It is noteworthy that the IVD of bromegrass depressed only slightly after June 25. Also, the two varieties of bromegrass were quite similar in digestibility despite the distinct differences in type.

The IVD of alfalfa was rather similar to that of bromegrass throughout the various cutting dates. Vernal tended to have a slightly higher digestibility on a date basis than DuPuits.

On a date basis the IVDs were generally highest in 1961 and invariably the lowest in 1962. Average differences of as great as 6.5 IVD units occurred on a given date between these two years. However, the digestibility curves were very similar from year to year with mainly horizontal shifts occurring relative to date.

It may be concluded that dry matter digestibility is controlled by a combined effect of date of cutting, stage of maturity, and species characteristics. The dangers of an overall application of date of cutting or stage of maturity as an index of digestibility are evident unless regard is given to species and year of harvest.

2. Leaf-Stem (Test 157)

The IVDs of the leaf-stem portions have been completed for the six field replications for 1962. Determinations for the other two years are currently being completed. Single determinations were conducted on each sample.

The results are quite noteworthy. At the early cutting dates, the dry matter digestibility of the leaf and stem portions are quite compærable. With advancing maturity only small differences exist in the IVD between the leaf and stem portions of timothy and bromegrass. If this is borne out by further studies, selection for leafiness in these species would increase the energy digestibility only slightly. However, marked differences existed in the IVD between the leaf and stem portions of orchardgrass and alfalfa particularly at the later cutting dates. Contrary to that with grasses, the leaves of alfalfa showed no depression in IVD with advancing maturity until the last cutting date. It is interesting that the IVD of both leaf and stem fractions of bromegrass depressed only slightly after June 25. Also, the digestibility of the stems of Saratoga and Canadian bromegrass were much similar despite the wide differences in grass structure. Furthermore, there is a tendency for both the leaf and stem portions of the later maturing varieties within a species to have a higher digestibility on a given date. (TEST 151, 157, 162)

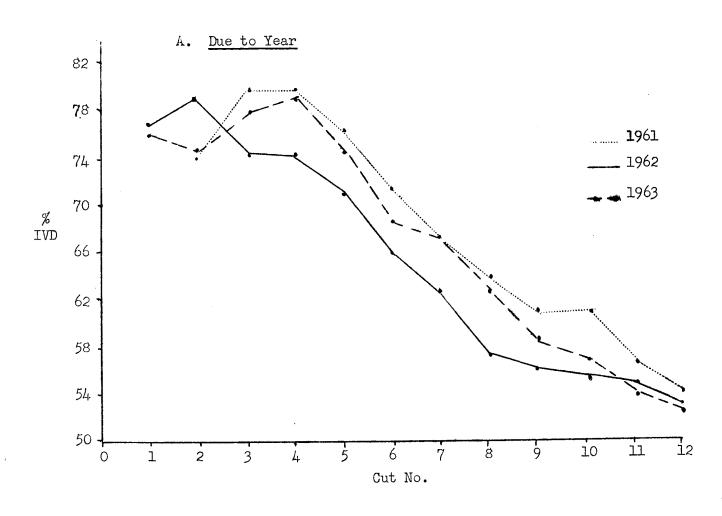
PER CENT IN VITRO DRY MATTER DIGESTIBILITIES OVER 3 YEARS*

1. WHOLE PLANT

Cut No.	Ave. Date.	Timo Glimax	thy Essex	Orci Frode	hard Ottawa	Brc Saratoga	me Canadian	Alfa Vernal	alfa DuPuits	Average
A. Date	Basis									
1 2 3 4 5 6 7 8 9 10 11 12	5-7 5-14 5-22 5-28 6-4 6-11 6-18 6-25 7-3 7-9 7-16 7-23	81.1 79.8 79.3 75.0 70.9 67.2 61.0 57.6 56.2 54.3 51.3	79.3 78.2 78.3 78.9 74.7 71.2 69.3 64.4 61.2 59.1 56.3 53.1	75.8 75.1 75.8 72.0 65.0 61.9 53.3 52.4 49.7 45.9	75.6 75.1 76.7 77.2 73.6 68.8 65.7 61.3 55.4 54.3 50.1 46.0	79.0 79.6 77.6 78.1 73.7 67.4 63.9 60.5 60.9 60.7 59.8 58.3	76.5 78.7 78.2 79.0 74.5 68.6 64.3 62.0 60.5 59.6 58.1 56.6	76.6 73.8 77.0 78.0 74.2 68.6 67.6 64.7 63.0 62.1 58.6 57.7	75.2 76.2 75.6 72.3 67.3 65.4 63.7 60.9 60.8 58.0 55.6	77.4 + 77.0 77.5 77.8 73.7 68.5 65.7 61.8 59.1 58.1 55.6 53.1
B. <u>Stage</u>	e of Maturity H	Basis								
Vegetativ Boot Heads Eme Flower Early See	erged	79.8 70.9 63.1 57.1 53.1	78.2 68.0 61.4 56.4 53.1	75.1 74.6 71.1 61.2 52.1	75.1 74.5 70.6 61.0 52.9	79.6 74.8 69.2 59.3 59.7	78.7 76.2 70.3 60.1 58.8	73.8 70.4 65.9 63.0 60.3	76.2 70.3(M.Bud 64.7(F.F1. 62.0(F1.F. 61.2	67.0

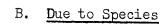
* With five of six replicates per year completed.
+ Cut l for 1961 deleted.

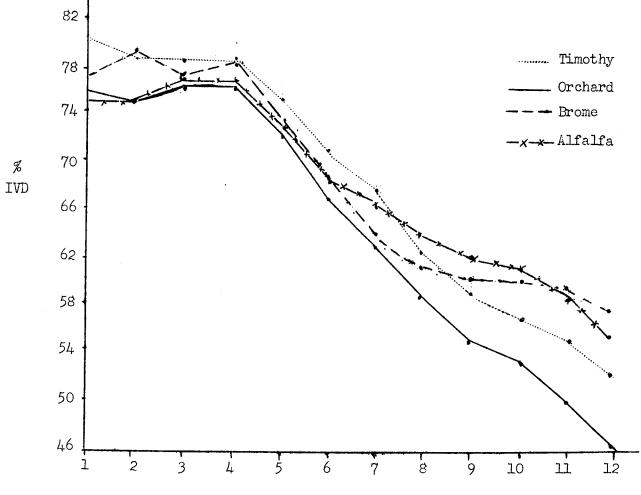
PER CENT IN VITRO DRY MATTER DIGESTIBILITY


TEST 157

		Timothy		Orch	ard	Bror	ne	Alfa	elfa
Cut No.	Ave. Date.	Climax	Essex	Frode	Ottawa	Saratoga	Canadian	Vernal	DuPuits
A. Leaf							·		
3 4 5 6 7 8 9 10 11 12	5-22: 5-28 6-4 6-11 6-18 6-25 7-3 7-9 7-16 7-23	75.3 72.7 70.1 66.4 63.1 59.7 58.8 56.0 52.1	77.0 73.5 70.1 69.6 65.9 65.1 62.2 58.5 53.4	73.0 71.2 69.1 66.4 61.9 59.5 56.7 56.9 55.5 51.2	73.1 72.3 69.1 65.7 64.0 62.7 59.2 58.6 57.5 54.9	76.1 74.8 72.9 70.1* 67.8* 64.4* 64.0* 65.1* 64.0* 64.2*	77.4* 75.6 70.5 67.4 64.8 63.6 62.2 60.3 59.7 57.2	77.8 79.4 77.8 77.0 77.0 77.3 76.6 76.5 77.2 73.1	77.2 77.6 77.0 76.7 77.0 76.7 77.2 77.7 77.9 71.0
B. Stem									
3 4 5 6 7 8 9 10 11 12	5-22 5-28 6-4 6-11 6-18 6-25 7-3 7-9 7-16 7-23	80.1 74.1 66.8 62.4 58.1 54.1 50.9 53.2 51.9	80.1 74.9 70.5 68.0 60.2 57.0 55.0 53.9 52.2	77.1 75.5 66.6 58.2 50.6 47.0 41.4 39.4 36.8 32.6	77.8 79.8 74.2 63.9 55.3 50.0 44.7 39.8 39.3 35.7	75.8 75.4 68.8 63.3 58.1 56.2 58.3 59.1 59.5 59.4	80.4 79.9 72.0 63.9 57.2 57.4 57.4 58.7 60.1 56.6	70.0 66.4 61.4 55.4 53.4 52.0 50.5 50.0 49.0 47.0	65.7 63.0 58.8 53.2 50.9 49.6 48.5 48.0 48.1 46.0

* Due to analytical error 1 rack (16 samples) is being repeated. Average of only 4 of 6 replicates shown.


VARIATION IN IN VITRO DRY MATTER DIGESTIBILITY (IVD)


(Test 151, 157, 162)*+

* With five of six replicates per year completed.+ Cut l for 1961 deleted.

 $7!_{4}$

Cut No.

PER CENT CRUDE PROTEIN

1. Whole Plant (Test 151, 157, 162)

The marked differences in the crude protein content of legumes compared to grasses were again evidenced. The depression in the crude protein content with advancing cutting date or maturity was much more pronounced with the grasses than with alfalfa.

Only minor differences occurred in the protein content of the grasses on a given date. However, there was a tendency for the later maturing varieties within a species to have a higher protein content. Also, the protein content of Canadian was consistently slightly higher than that of Saratoga bromegrass. Furthermore, on a stage of maturity basis, timothy tended to have a slightly lower protein content than the other grasses.

2. Leaf-Stem (Test 151, 157)

Analyses of the crude protein content of leaf-stem fractions have been completed for tests 151 and 157. The protein content of leaves was consistently much higher than that of stems. The depression in the crude protein content with advancing cutting date was much more pronounced with both the leaf and stem portions of grasses than with alfalfa. Also, the stems, in addition to the leaves of alfalfa, were much higher in crude protein content than that of the grasses. PER CENT CRUDE PROTEIN OVER 3 YEARS

1. WHOLE PLANT

(Test 151, 157, 162)											
		Timot	thy	Oı	chard	Bro	ome	Alfa	lfa		
Cut No.	Ave. Date.	Climax	Essex	Frode	Orchard	Saratoga	Canadian	Vernal	DuPuits	<u> Àverage</u>	
A. Date H	Basis										
1 2 3 4 5 6 7 8 9 10 11 12	5-7 5-14 5-22 5-28 6-4 6-11 6-18 6-25 7-3 7-9 7-16 7-23	26.2 23.0 17.1 14.6 12.5 10.3 9.5 8.6 7.5 6.7 5.9 5.7	28.2 24.3 18.4 14.7 13.5 12.2 10.0 9.0 7.8 7.2 6.3 6.2	28.0 23.2 16.0 13.0 10.8 9.2 8.4 7.5 6.9 6.6 6.1 6.2	31.829.022.418.014.612.210.79.48.27.66.96.3	27.4 22.4 17.1 14.2 11.6 9.3 8.5 7.1 6.5 5.9 5.4 5.0	28.2 25.6 20.3 17.0 13.7 10.9 9.7 8.4 7.4 6.5 6.1 5.9	32.3 32.0 27.1 24.1 22.3 20.3 18.8 17.4 16.1 15.8 14.4 14.4	35.8 33.1 27.5 23.6 21.7 19.6 17.9 16.6 16.0 15.2 14.0 13.8	29.7+ 26.6 20.7 17.4 15.1 13.0 11.7 10.5 9.6 8.9 8.1 7.9	
B. Stage	of Maturity Basi	S									
Vegetative Boot Heads Emer Flower Early Seed	rged	23.0 10.6 8.9 6.9 5.7	24.3 9.6 8.3 6.7 6.2	23.2 13.3 11.0 8.2 6.6	29.0 15.7 12.7 9.6 7.6	22.4 13.4 10.0 6.7 5.8	25.6 14.7 11.7 7.2 6.3	32.0 20.8 17.7 16.7 15.6	33.1 21.5(M.B 17.0(F.F 16.2(F1. 15.6	1.) 12.2	

+ Cut 1 for 1961 deleted.

PER CENT CRUDE PROTEIN

(Test 151, 157)

	Ave.	Timo	thy	Or	chard	E	rome	Alf	alfa
Cut No.	Date	Climax	Essex	Frode	Ottawa	Saratoga	Canadian	Vernal	DuPuits
A. Leaf									
A. Leaf									
3	5-22							33.8	34.4
4	5-28	15.6	16.0	15.6	18.9	15.4	18.4	31.6	32.0
5	6-4	14.2	14.6	13.4	15.6	14.8	17.7	32.3	31.8
6	6-11	13.0	12.9	11.4	13.9	13.4	14.8	30.4	30.2
7	6-18	12.2	12.3	10.6	12.3	12.9	14.8	29.4	28.0
8	6-25	11.7	11.8	9.3	11.5	12.2	13.1	27.5	26.7
9	7-3	10.0	10.4	8.5	9.9	11.9	12.4	26.6	26.0
10	7-9	9.1	9.6	7.9	9.2 9.0	11.0 10.1	11.9 11.3	24.4 23.8	23.8 23.2
11	7-16	8.4	8.8 8.2	7.6 8.1	9.0 8.9	10.1	10.6	23.2	23.4
12	7-23	7.3	0.2	0,1	0.7	10.2	10.0	~)•~	~)•4
B. Stem									
3	5-22		,				70.0	75.0	-
4	5-28	11.6	11.6	8.9	10.0	10.0	13.2	15.2	14.8
5	6-4	9.0	10.2	7.3	8.1	7.4	9.6	13.4 11.2	12.2 10.2
6	6-11	6.9	8.1	6.2	7.0	6.4	7.8 7.1	10.0	9.5
7	6-18	6.1	6.4	5.2	5.8 5.3	5.6 4.7	5.6	9.8	9.2
8	6-25	5.8	5.8	4.9 4.8	<i>4.</i> 6	4.7 4.0	5.0	9.3	9.0
9 10	7-3 7-9	5.5 5.0	5.4 5.4	4.0	4.0	3.8	4.6	9.2	9.0
10	7-9 7-16	J.0 4.8	J.4 4.9	3.8	4.0	3.7	4.5	9.6	9.0
12	7-23	4.8	4.7	2.9	3.3	4.0	4.4	9.8	9.4

* Average of 2 years data.

2. IEAF-STEM*

PLANT COMPETITION DURING THE SEEDLING YEAR IN ALFALFA-GRASS ASSOCIATIONS ESTABLISHED WITHOUT A COMPANION CROP, 1961 AND 1962.

TESTS 159 AND 164

A part of the data obtained from these studies was used as a M.S.A. thesis by David J. Hume. A partial summary of this thesis is given below. However, the data for the residual effect of seedling year treatments on the hay crop the following year are shown in the table for test 164.

Partial Thesis Summary

Two growth types of alfalfa represented by the varieties DuPuits and Vernal were each sown with either bromegrass, orchardgrass, or timothy in simple mixtures to study inter-specific competition during the seedling year. Competition was studied by determining the effects of the alfalfa varieties on the growth of the grass plants and visa versa. Hay and pasture cutting managements and four combinations of stubble heights were applied and plant characteristics measured.

1. In the pasture management, the greatest interspecific competition occurred during the first aftermath growth. Although differences in the alfalfa and grass growth occurred by the first pasture cutting date, the related effects of one species on its mixture component were small. Plant measurements in September revealed plant vigor differences remained from the first aftermath competition, but yield differences due to competing species had disappeared.

2. Mixtures handled as hay permitted greater development of the first growth before cutting, hence unlike the pasture management, stand, yield and vigor differences among the competing grasses resulted in variations in the top weights and yields of associated alfalfa plants. Grass tiller development was affected by competition from associated alfalfa varieties.

3. Frequent clipping favoured the grass component in mixtures. The grasses were also favoured by higher stubble heights.

4. Stand counts throughout the growing season indicated seeds continued to germinate during the summer.

5. Highest yields were obtained from plots handled as hay. Increasing the grass percentage in the hay by higher cutting, decreased yields. DuPuits_timothy gave the highest yield but had the least vigorous grass.

6. DuPuits-orchard gave the highest pasture yields and much better pasture aftermath production.

TEST 164

HAY YIELDS (1963) FOLLOWING SEEDLING YEAR MANAGEMENTS (1962)

Seeded: 1962 Harvested: June 18, 1963

											Harve		وفت فاسن	
			Hay Man	agement			2024			Pasture			TO 1 TT.	
	Yield	%	Yield	%	Yield	Plant Vi	g-5 Pl.	Yield	%	Yield	%	Yield		<u>g-5 Pl</u>
Man.	DM 1b/A	<u>Alfalfa</u>	<u>Alfalfa</u>	Grass	Grass	Alfalfa	Grass	DM lb/A	<u>Alfalfa</u>	<u>Alfalfa</u>	Grass	Grass	Alfalfa	Grass
DuPuits														
+ Brome								~ ~ ~ ~ ~	~~ 7	o F ol	0 00	7115	13.3	19.8
*2"_2"	5426	62.1	3369	37.9	2057	13.8	26.8	5179	72.1	3734	27.9	1445 2210	13.3	32.4
2"_6"	5442	60.4	3287	39.6	2155	12.2	36.5	5225	57.7	3015	42.3	1655	16.0	40.9
6"_2"	5340	60.7	3241	39.3	2099	10.8	22.3	5140	67.8	3485	32.2	2931	15.4	38.8
6"_6"	5422	60.4	3275	39.6	2147	12.0	31.1	5489	46.6	2558	53.4	2931	1).4	0.0
+ Orchar	d								~~ o	2(0]	a d	1187	14.3	16.9
2"-2"	4779	77.8	3718	22.2	1061	12.2	12.7	4788	75.2	3601	24.8		10.1	16.5
2"-6"	4939	74.9	3699	25.1	1240	18.0	18.8	4691	69.0	3237	31.0	1454	10.1	19.1
6"_2"	4819	74.9	3609	25.1	1210	13.6	14.6	4710	69.9	3292	30.1	1418	13.2	19.3
6u_6n	4937	71.0	3505	29.0	1432	15.1	12.3	51.02	57.4	2929	42.6	2173	2.CT	17.0
+ Timoth			. *							1.000	7 7 7	717	14.7	8.2
211_211	[°] 4785	78.3	3747	21.7	1038	13.1	11.4	4949	84.9	4202	15.1	747	13.3	13.7
21-61	5083	77.6	3944	22.4	1139	16.7	8.4	3975	86.3	3430	13.7	545		14.5
61_21	5128	77.2	3959	22.8	1169	15.4	7.5	5021	82.3	4132	17.7	889	15.2	14.7
6"_6"	5113	80.0	4090	20.0	1023	16.8	10.8	4946	81.0	4006	29.0	940	14.9	14+•(
Vernal														
+ Brome									~~ ~	2000	44.3	2457	10.4	31.9
2"-2"	5689	60.5	3442	39.5	2247	15.2	33.9	5546	55.7	3089	52.4	2931	9.5	31.1
2"-6"	6001	51.3	3079	48.7	2922	15.7	29.7	5593	47.6	2662	52.9	2958	14.2	35.8
6"_2"	5925	53.8	3188	46.2	2737	13.0	33.0	5591	47.1	2633		2883	12.7	38.0
6"_6"	61.04	41.0	2503	59.0	3601	14.3	37.4	5609	48.6	2726	51.4	2005		J0.0
+ Orchai					•			ro (r	/	2120	20.2	1637	11.0	17.1
2"_2"	5445	72.7	3959	27.3	1486		15.6	5067	67.7	3430	32.3 36.7	1793	14.4	13.3
2"-6"	5429	74.6	4050	25.4	1379	12.1	16.8	4885	63.3	3092	26.5	1310		14.0
6"_2"	5098	72.6	3701	27.4	. 1397	15.9	16.2	4942	73.5	3632		1685	13.9	16.3
6n_6n	5222	72.8	3802	27.2	1420	15.0	22.3	4772	64.7	3087	35.3	T082	13.9	
+ Timot		•								1000	~ 7	1001	18.6	17.6
2"_2"	5405	80.3	4340	19.7	1065		13.1	5187	78.9	4093	21.1			12.4
2"-6"	5461	77.0	4205	23.0	1256		11.2	5343	75.1	4013	24.9			8.9
6"_2"	5306	80.4	4266	19.6	1040		11.7	5263	79.1	4163	20.9			15.1
6"_6"	5448	76.I	4146	23.9	1302	15.3	19.5	54.28	71.9	3903	28.1	. 1525	20.0	エノ・エ
		•												

* Indicates cutting height of first and second harvests in seeding year; ** Dry weight in grams.

BARLEY VARIETIES AND ESTABLISHMENT

TEST 166

Outline: 1962 Report.

Results:

The data collected in 1963 is shown in the tables. Some points of interest might be:

1. Establishment of this test was good. By fall, barley had 15% fewer alfalfa plants than oats or no companion; the brome plants had thinned about 20% and 40% under each, respectively. There were little differences among the barley varieties and mixed grain in stand.

2. Alfalfa plants were taller under the Herta variety throughout and its early development also appears to be faster under it.

3. The alfalfa plant weights were higher in the early samplings under Herta and Garry but the October sampling showed smaller top weights from the mixed grain and Garry. This may have been due to oat grain shatter and their seedling development. The brome weights were also lower.

5. The brome and alfalfa plants which were cut to a 2 inch height following grain harvest, were similar in height and development on October 1 under the various companion crops, but were taller and more vigorous where no companion crop was used. TEST 166

BARLEY VARIETY AND ESTABLISHMENT (1963)

Seeded: 'April 29, 1963 Underseeded with Vernal and Lincoln

Location: C-2

10 Plant Samples										
			Var	iety						
Main Stems Per	York	<u>Herta</u>	Parkland	<u>Mix.Grain</u>	Garry	No Companion				
Foot of Row	33.5	36.3	22.8	34.0	25.3					
Establishment										
Spring Vernal	29.4	30.5	26.9	29.3	29.2	41.9				
Lincoln Fall	14.1	15.2	13.5	17.2	15.7	25.0				
Vernal Lincoln	22.1 12.3	22.3 12.6	21.4	21.5	24.0	25.1				
	12.)		12.2	11.6	15.1	20.6				
July 4, 1963 Vernal Alfalfa										
Height Tillers	23 1.0	24 1.0	22 1.0	22 1.0	23 1.0	36 1.4				
Dry Weight Lincoln Brome	1.06	1.28	.96	1.12	1.21	5.52				
Height	18	17	21	19	20	27				
Tillers Dry Weight	1.0 .32	1.0 .36	1.0 .46	1.0 .49	1.0 .70	3.3 4.84				
July 25, 1963		2	- ,			,				
Vernal Alfalfa			- (
Height Tillers	24 2.1	30 2.7	26 2.1	22 2.2	26 2.0	46 2.6				
Dry Weight Lincoln Brome	2.06	2.65	2.06	1.56	2.08	12.48				
Height Tillers	18	17	19	19	18	37				
Dry Weight	1.5 .53	1.2 .56	1.5 .60	1.4 .75	1.2 .66	4.5 9.75				
August 7, 1963			,							
Vernal Alfalfa Height	36	41	39	33	31	52				
Tillers	2.7	2.8	2.8	2.4	2.4	3.7				
Dry Weight Lincoln Brome	- Hin they	3.73	3.62	3.53	3.44	19.69				
Height Tillers	28 2.4	28 2.0	27 2.2	26 2.4	24 1.6	59 5.9				
Dry Weight	.87	.89	.87	1.03	1.12	19.72				
October 1, 1963 Vernal Alfalfa										
Height	32	34	32	31	28	47				
Tillers Dry Weight	4.6 12.0	4.6 12.7	4.8 12.9	5.0 10.8	4.4 10.4	4.2 19.5				
Lincoln Brome Height										
Tillers	24 8.0	23 7.7	23 8.5	22 7.4	21 8.0	28 8.5				
Dry Weight	7.4	7.2	7.6	6.6	6.6	10.8				

82

•

OAT LODGING AND FORAGE ESTABLISHMENT

TEST 167

Outline: 1962 Report.

Results:

The data collected in 1963 is shown in the tables. Some of the results are:

1. Early severe and late lodged oats were reduced in yield with the former also having lighter seed and more hull.

2. The companion crop of oats reduced the stand of both alfalfa and brome. Early lodging and late severe reduced stands of alfalfa and brome in the fall.

3. Lodged oats intercepted more light at ground level than unlodged and this increased as the season advanced. Late moderate lodging produced the best stand and had less light intercepted than the other treatments.

4. In all cases the plants were more vigorous where no companion crop was used. At the first lodging date, July 4, the alfalfa and brome were twice as tall, further developed and several times heavier under the no companion crop as under oats.

5. At the second lodging, July 31, in general, the alfalfa and brome seedlings had not grown under the oats since the previous sampling but they had doubled in development and weight under the no companion crop. For the characters studied, the early lodged oat treatments gave alfalfa and brome plants similar to those as under unlodged oats.

6. At the time of oat harvest (August 7) the alfalfa plants were the same height and development under all oat treatments. However, they were slightly heavier under the late severe lodging where the stand was thinner. The bromegrass was lighter in weight and had fewer stools under this treatment. Both species had twice the height and development and several times the top growth weight where no companion crop was used.

7. Although all plots were trimmed off to 2 inches following oat harvest, the no companion crop plants still were more vigorous on October 1. All the alfalfa was similar in height but the thinner stand under late severe lodging was reflected in heavier and more developed plants. Bromegrass again showed less development under this treatment. TEST 167

_

OAT LODGING (1963)

Seeded: April 29, 1963

Location: C-2

Oats Harvested: Aug. 8

	Oat Yield and Quality										
Oat Oat 1000 Per						Plants/Sq	uare Foo	1	Light		
Lodging	Yield	Weight	Seed Wt.	Cent	Spr	ing	Fal	1	Int	crception	
Treatment	Lb/A	$\underline{\text{Lb.}/A}$.	Gms.	Hull	Vernal	Lincoln	Vernal	<u>Lincoln</u>	July 4	July 31	Aug. 8
Early, moderate	2077	33.7	26.0	30.2	31.8	14.4	13.8	7.8	74	77	84
Early, severe	1707	29.5	25.3	32.3	29.5	14.0	14.2	7.4	79	80	82
Late, moderate	1818	33.6	27.9	29.6	30.9	14.1	20.8	12.5	69	79	80
Late, severe	1745	33.8	27.5	29.8	30.8	12.5	14.4	9.7	72	82	86
No lodging	2056	33.3	26.4	30.2	29.8	13.7	20.2	11.8	70	72	78
No companion					33.9	18.5	21.2	17.3	49	74	79
			· · · · · · · · · · · · · · · · · · ·								

Straw Yield - 3778 lb/acre.

TEST 167 Seeded: April 29

OAT LODGING (1963)

10 Plant Samples

Location:	C- 2

	Early, Moderate	Early, Severe	Lodging Tr Late, Moderate	eatment Late, <u>Severe</u>	No Lodging	No <u>Companion</u>
July 4, 1963						
Vernal Alfalfa *Height Tillers **Dry Weight Lincoln Brome Height Tillers					18.0 1.0 .8 25.0 1.0	37.0 1.2 6.7 31.0 2.7
Dry Weight July 25, 1963					.6	6.3
<u>Vernal Alfalfa</u> Height Tillers Dry Weight	16.0 1.6 .7	20.0 1.9 .8			16.0 1.6 .6	41.0 3.0 13.1
<u>Lincoln Brome</u> Height Tillers Dry Weight	25.0 1.0 .7	28.0 1.1 .7			21.0 1.1 .5	40.0 5.1 14.3
August 7, 1963						
Vernal Alfalfa Height Tillers Dry Weight	26.0 2.1 1.6	25.0 2.1 1.4	26.0 2.1 1.6	28.0 2.0 2.0	28.0 2.1 1.3	45.0 3.8 16.9
<u>Lincoln Brome</u> Height Tillers Dry Weight	29.0 2.1 1.0	30.0 1.9 1.0	28.0 2.0 1.0	24.0 1.6 .7	24.0 2.0 .9	54.0 5.4 22.1
October 1, 1963						
Vernal Alfalfa Height Tillers Dry Weight	20.0 3.9 7.9	21.0 4.2 8.9	19.0 4.8 8.2	19.0 4.9 9.5	21.0 3.9 9.3	32.0 4.2 13.9
<u>Lincoln Brome</u> Height Tillers Dry Weight	18.0 8.0 6.4	20 8.1 6.6	18.0 9.1 7.5	16.0 7.5 5.2	17.0 7.9 7.3	26.0 8.6 9.4

FORAGE CROP PUBLICATIONS AND PAPERS PRESENTED

May 1, 1962, to April 30, 1964

- Christie, B.R. Performance of common orchardgrass. Forage Notes Vol. 9, No. 1, pp. 56-58, Spring 1963.
- Christie, B.R. Male-sterility in grasses. Forage Notes, Vol. 9, No. 2, pp. 50. Fall 1963.
- Department of Crop Science. 1963 Crop Notes for Extension, Promotion and Sales Programs. Dept. of Crop Sci. Mimeo 121/01, Y63. September 1963.
- Department of Crop Science. High dry matter silage or haylage. Dept. of Crop Sci. mimeo 120/52.1 Y62, 4 pp. June 1962.
- Department of Crop Science. 1962 Crop Notes for Extension, Promotion and Sales Programs. Dept. of Crop Sci. mimeo, 30 pp. - September 1962. (With Kemptville Agricultural School and Western Ontario Agricultural School)
- Jones, G.E. Relative merits of growing cereal crops or forages for milk and/or beef production in the East Central Region. Can. Soc. Agron. Proc. 1962, pp. 43-46, 1962.
- Jones, G.E. Use of herbicides in the establishment of forage seedlings. Forage Notes 8: No. 3, 16-19, Fall 1962.
- Ontario Forage Crops Committee. 1962 progress report on farm plantings of forage crops. Department of Crop Sci. mimeo, 15 pp. Oct. 1962. (Dept. of Crop Sci,, with K.A.S., W.O.A.S., and Soils and Crops Branch of the O.D.A.)
- Ontario Committee on Field Crop Recommendations (W.E. Tossell, Chairman). 1964 Field Crop Recommendations for Ontario. Ont. Dept. of Agric. Publ. 296 (revised), January 1964.
- Tossell, W.E. Ontario's field crop research program. Proc. Ont. Soil and Crop Improvement Assoc. 1963 convention, pp. 81-85, January 1963.
- Tossell, W.E. What the forage seed consumption area of Canada looks for in seed. Can. Seed Growers' Assoc. Proc. pp. 19-24. June 1962.
- Tossell, W.E. The future of forages in Ontario. Ont. Soil and Crop Improvement Assoc., Toronto, January 1964.
- Tossell, W.E. The variety picture. Ont. Soil and Crop Improvement Assoc., Toronto, January 1964.
- Young, W.S. Field crop recommendations for 1963. Proc. Ont. Soil and Crop I_provement Assoc. 1963 convention, pp. 76-81, January 1963.
- Young, W.S. Haylage...a future in Ontario? Good Farming Quarterly, Spring 1963.

Young, W.S. Haylage...a future in Ontario? The Furrow (John Deere), April 1963.

Young, W.S. Can you help your alfalfa produce longer? Information Branch to Seed Fair Issues.

Young, W.S. Why the trend to haylage? O.S.C.I.A. Proc., January 1964.

FORAGE PROGRESS REPORT 1963

This report contains data on Crop Science Department forage trials. It includes data on variety trials and results of breeding experiments. Most of the variety trials are reported in the "1963 Report on Field Trials of Varieties and Mixtures". That report and the present report should be filed together. The report is prepared for use of the members of the Crop Science Department and for those associated with the forage program.

CONTENTS	
(Year refers to year trial was seeded and number in brackets is experim	ent number)
	Pag
Weather Records, 1963	1
Alfalfa	
Alfalfa Provincial Preliminary Trial, 1960 (545)	
Alfalfa Provincial Preliminary Trial, 1962 (573)	
Alfalfa Performance Trial, 1961 (570)	
Alfalfa Performance Trial, 1963 (575)	
Alfalfa Winterhardiness Trial, 1963 (581)	
Birdsfoot trefoil	12
Birdsfoot Trefoil Performance Trial, 1963 (576)	
Birdsfoot Trefoil Interspecific Hybrid Trial, 1963 (576H)	
Birdsfoot Trefoil Selection Nursery, 1963	
Strain Trials in a Weed-Free Environment	13
White Clover	14
White Clover Strain Trial, 1962 (574)	
Red Clover	
Red Clover Strain Trial, 1961 (572)	15
Orchardgrass	
Orchardgrass Management Test, 1959 (601)	
Orchardgrass Selection Nursery, 1960 (618)	
Orchardgrass - Local Collections and Introductions, 1961 (622)	
Orchardgrass Clones and Soil Fertility, 1962 (625)	
Studies on Male-Sterility (635)	
Timothy	
O.E.C.D. Timothy Test, 1962 (631)	
Bromegrass	
Brome-Alfalfa Competition Study 1960 (217)	

Brome-Alfalfa Competition Study, 1960 (217)	6
Brome Polycross Nurseries, 1961 3	
Brome Synthetic Test, 1960 (218) 34	
Seed Increase of Bromus catharticus and B. auleticus	
Plant Selections from Source Nurseries, 1963	
Plot Uniformity Study on Pure Stand Brome and Alfalfa-Brome Mixed	
Stand, 1961 (232, 233) 3	7
Brome Trials Seeded in 1963 3	
Miscellaneous Species Trials	0
Annual Phalaris Species, 1962 (616-2) 4	
Annual Forage Sorghum and Sudan Crosses, Guelph, 1963 4	
Annual Forage Sorghum and Sudan Crosses, Kemptville, 1963 44	
Russian Comfrey, 1963 4	
Description of New Varieties	4
Redpatch Bromegrass 4	
Astra Timothy	4
Mimer Meadow fescue 4	5
Trader Meadow Fescue	
Lakeland Red Clover	6
R.P. Mor-Su Sorghum 4	

Forage Grop Publications and Papers Presented, May 1, 1962, to April 30, 1964 .. 48 (See 1961 Forage Management Report for publication list up to April 30, 1962)

1963 GROWING SEASON WEATHER RECORDS

.

TEMPERATURE		APRIL	MAY	JUNE	JULY	AUGUST	SEPTEMBER
Harrow	Max. Min.	56 .2 37.0	65.5 45.8	79.0 56.1	82.1 61.9	76.1 58.4	71.4 50.7
Ridgetown	Max. Min.	56.1 35.0	64.4 44.2	77.6 56.1	81 .2 60.8	76.4 56.3	70.6 48.7
Guelph	Max. Min.	54.4 32.0	61.9 40.0	76.1 50.3	79.0 55.9	73.3 51.3	67.0 42.6
Kemptville	Max. Min.	52.7 31.5	63.9 41.4	78.8 54.1	81.5 59.0	74.3 52.6	66.4 41.5
Ottawa	Max. Min.	52.5 33.1	64.0 41.8	78.6 55.5	80.3 60.5	72.6 53.7	64.5 43.4
New Liskeard	Max. Min.	46.8 27.4	59.0 36.1	75.8 48.8	77.4 55.7	66.9 50.6	66.9 51.0
Kapuskasing	Max. Min.	43.9 23.1	56.3 31.2	73.8 43.5	75.2 52.3	66.8 45.0	58.4 39.9
Gore Bay	Max. Min.	51.2 28.7	59.5 36.0	73.1 48.9	78.1 55.9	71.7 52.1	63.9 44.1
Fort Frances	Max. Min.	50.7 29.3	60.5 39.3	74.7 54.7	78.2 58.2	75.0 52.9	68.6 47.2
PRECIPITATIO	N						
Harrow		3.5	2.0	2.2	1.5	1.9	1.5
Ridgetown		4.1	3.4	2.1	2.8	1.5	1.3
Guelph		2.7	3.0	0.6	3.2	2.2	1.9
Kemptville		3.2	2.2	0.7	1.6	4.3	4.1
Ottawa		2.5	2.6	1.5	3.2	3.5	4.8
New Liskeard		1.2	1.6	1.4	1.9	6.7	2.1
Kapuskasing		2.7	2.4	3.2	4.9	3.6	1.8
Gore Bay		2.4	1.7	1.3	2.9	2.8	1.2
Fort Frances		3.5	4.4	2.1	4.4	3.9	2.4

DEPARTURES OF 1963 GROWING SEASON FROM NORMAL

TEMPERATURE		APRIL	MAY	JUNE	JULY	AUGUST	SEPTEMBER
Harrow	Max.	+0.2	-2.8	+0.2 -2.3	-1.3 -0.8	-5.5 -2.9	-3.0 -3.8
	Min.	+0.2	_1.8	+0.4	-1.1	-4.0	-2.0
Ridgetown	Max. Min.	+2. 5 -1.2	_0.9 -2.2	-0.7	_0.7	-3.9	-5.2
Guelph	Max. Min.	+3.1	_2.0 _3.6	+1.8 -3.0	_0.3 _1.5	-4.4 -4.7	-2.8 -6.5
Kemptville	Max.	40.4	-2.6	+2.4	+0.1	-4.8	-3.5
Kemptviite	Min.	.1.3	_2.4	+0.5	+1.1	-2.9	-6.3
Ottawa	Max. Min.	+2.2 +0.7	_1.4 _1.9	+3.6 +2.0	+0.4 +2.6	-5.6 -1.9	-3.8 -4.7
New Liskeard	Max.	+0.9 +3.1	_3.2 _0.3	+3.4 +1.3	+0.6 +2.6	-7.9	+2.0 +7.9
	Min.			+4.5	+1.0	-4.7	-2.1
Kapuskasing	Max. Min.	+1.2 +1.6	_1.2 _3.8	-3.1	+0.3	-5.3	-1.5
Gore Bay	Max. Min.	+2.6 +0.5	-2.2 -2.6	+2.4 +0.2	+0.3 +1.6	-4.5 -1.8	-2.6 -2.7
Fort Frances	Max. Min.	+1.7 +0.9	-2.5 -1.3	+2.5 +4.0	_0.1 +1.9	0 -1.1	+4.2 +2.7
PRECIPITATION	1						
Harrow		+0.8	-0.7	-0.9	-1.0	-0.7	-0.8
Ridgetown	. ·	+1.0	+0.4	-0.7	0	-0.9	-1.2
Guelph		0	-0.2	-2.4	0	-0.8	-1.0
Kemptville		+0.5	-0.7	-1.9	-1.2	+1.4	+1.1
Ottawa		-0.2	-0.2	-1.6	0	+0.2	+1.6
New L is keard		-0.5	-0.6	-1.9	-1.7	+3.6	-1.2
Kapuskasing		+1.0	-0.1	+0.3	+1.8	+0.5	-1.3
Gore Bay		-0.2	-0.7	-1.5	+0.7	+0.5	-2.2
Fort Frances		+1.5	+1.7	-2.0	+0.6	0	-0.9

1931-1960 MONTHLY AVERAGES OF RAINFALL AND TEMPERATURE

FOR GROWING SEASON

TEMPERATURE		APRIL	MAY	JUNE	JULY	AUGUST	SEPTEMBER	OCTOBER
Harrow	Max.	56.0	68.3	78.8	83.4	81.6	74.4	62.9
nallow	Min.	36.8	47.6	58.4	62.7	61.3	54.5	44.1
Ridgetown	Max.	53.6	65.3	77.2	82.3	80.4	72.6	60.9
1146040	Min.	36.2	46.4	56.8	61.5	60 .2	53.9	43.9
Guelph	Max.	51.3	63.9	74.3	79.3	77.7	69.8	57.9
	Min.	33.3	43.6	53.3	57.4	56.0	49.1	39.3
Kemptville	Max.	52.3	66.5	76.4	81.4	79.1	69.9	57.4
	Min.	32.8	43.8	53.6	57.9	55.5	47.8	37.0
Ottawa	Max.	50.3	65.4	75.0	79.9	78.2	68.3	55.9
	Min.	32.4	43.7	53.5	57.9	55.6	48.1	37.5
New Liskeard	Max.	45.9	62.2	72.4	76.8	74.8	64.9	
(1921-1950 normals)	Min.	24.3	36.4	47.5	53.1	50.7	43.1	
Kapuskasing	Max.	42.7	57.5	69.3	74.2	71.5	60.5	48.1
	Min.	21.5	35.0	46.6	52.0	50.3	41.4	33.0
Gore Bay	Max.	48.6	61.7	71.7	77.8	76.2	66.5	55.2
	Min.	28.2	38.6	48.7	54.3	53.9	46.8	37.6
Fort Frances	Max.	49.0	63.0	72.2	78.3	75.0	64.4	53 .2 34.8
	Min.	28.4	40.6	50.7	56.3	54.0	44.5	J 4 •0
PRECIPITATION	I							
Harrow		2.7	2.7	3.1	2. 5	2.6	2.3	2.2
Ridgetown		3.1	3.0	2.8	2.8	2.6	2.5	2.7
Guelph		2.7	3.2	3.0	3.2	3.0	2.9	2.6
Kemptville		2.7	2.9	2.6	2.8	2.9	3.0	2.6
Ottawa		2.7	2.8	3.1	3.2	3.3	3.2	2.6
New L is keard (1921-1950 no	ormals)	1.7	2.2	3.3	3.6	2.9	3.3	
Kapu skasi ng		1.7	2.5	2.9	3.1	3.1	3.1	2.4
Gore Bay		2.6	2.4	2.8	2.2	2.3	3.4	3.1
Fort Frances		2.0	2.7	4.1	3.8	3.9	3.3	1.9

In 1963 yield data and other observations were taken from Preliminary Trials seeded in 1960 and in 1962 and from a Performance Trial seeded in 1961. In addition a second Performance Trial together with some introductions were seeded and successfully established.

Alfalfa Provincial Preliminary Trial, 1960 (Test 545)

In this test seeded in 1960 there was a thinning of the stand, especially in the section harvested as pasture. as shown in the table below.

Number of Plants per Square Foot, November 12, 1963

	Normal Management	Mismanaged Section
High Seed Narragansett	5-6	3.5-4
Narragansett	4.5-5.5	3.5-4.5
Vernal	4.5-5	3-4
Cayuga	4.5-5.5	3.5-4.5
DuPuits	5.5-6	3-4
Saranac	5.5-6	3.5-4
Haymor (502)	5.5-6.5	3-3.5
Orchies	4.5-5	3-4

Although the plant counts shown above do not provide any indication that bacterial wilt is affecting the stand, it is interesting to note that in 1963 Saranac and Wilt-resistant Narragansett outyielded their wilt susceptible counterparts by 400-500 pounds whereas in 1962 there was little difference.

In none of the three years from 1961-63 did Cayuga or Haymor show to advantage. The leading variety over the three-year period, Saranac, was in third position in 1961, second in 1962, and first in 1963. High Seed Set Narragansett owes its second place ranking mainly to its high yields in the first cut of 1961 and 1962. Although Vernal was outyielded by DuPuits and Saranac and by the two Narragansett derivatives, it outyielded all the others.

The same 13 varieties were sown at Kemptville in the same year. Over the three-year period the best variety outyielded the poorest by only 12% but the ranking at the two stations showed some lack of parallelism. DuPuits was among the highest at Guelph and second last at Kemptville, while Cayuga was well down at Guelph and well up at Kemptville. On the other hand, Saranac excelled at both localities.

ALFALFA

ALFALFA PROVINCIAL SCREENING TRIAL, GUELPH, 1960 SEEDING

Test 545

1961-3 Yields in Lbs. D.M. per Acre

			1963				1962		1	961	1	Three-Ye	ar Avera	3e
	Cut 1 Jun.13	Cut 2 Ju1.11	Cut 3 Aug.21	Aft. Past.	Total	Hay	Aft. Past.	Total	Hay	Aft. Past.	Hay	Past.	Total	Rank
High Seed Set Narragansett	3935	1343	1862	3205	7140	4088	3636	7724	4 £ 58	3466	4227	3436	7663	2
Wilt Resistant Flemish	4609	1480	1950	3430	8039	3519	3901	7420	4373	3616	4167	3649	7816	1
Vernal	4262	1089	1782	2871	7133	3749	3526	7275	4744	3348	4252	3248	7500	5
Wilt Resistant Narragansett	4454	1275	1772	3047	7501	3565	3569	7134	4813	3394	4277	3337	7614	4
DuPuits	4298	1501	1815	3316	7614	3289	4132	7421	4222	3614	3936	3687	7623	3
Cardinal	3974	1462	1827	3289	7263	3323	3927	7250	4389	3547	3895	3588	7483	6
Narragansett	4026	1187	1840	3027	7053	3633	3520	7133	4555	3391	4071	3313	737 7	7
Orchies	3655	1314	1817	3131	6786	3389	3888	7277	4073	3595	3706	3538	7244	11
Haymor NK 502	4101	1332	1787	3119	7220	3211	3772	6983	4323	3488	3878	3459	7337	á
Cayuga	4031	1324	1732	30 56	7087	3524	3595	7119	4060	3486	3872	3379	7251	10
NK 503	4052	1070	1710	2780	6832	3461	3452	6933	4338	3279	3950	3170	7127	13
N.Y. Syn A	4319	1430	1675	3105	7424	3321	3701	7022	4293	3093	3978	3300	7278	9
NK 504	4212	1332	1812	3144	7356	3477	3571	7048	3832	3380	3840	3365	72 05	12
Mean	4149	1319	1799	3118	7267	3505	3706	7210	4359	3438	4004	3421	7425	
	N.S.	275	N.S.			319		N.S.	N.S.	142				
	9.6	14.6	7.8			6.3		5.0	10.2	3.0				

ALFALFA PROVINCIAL PRELIMINARY TRIAL, 1962 - TEST 573

1962 Seeding on 11E

In this O.A.C. test, as in the corresponding one at Kemptville, Mega and Glacier looked very promising. Since both of these are likely to have a satisfactory level of winterhardiness they may provide strong competition to DuPuits in the future.

PROVINCIAL ALFALFA PRELIMINARY TRIAL, 1962 SEEDING, GUELPH

Test 573

1963 Yields in Pounds Dry Matter per Acre

	Cut	t 1	Cut 2	Cut 3	Summe	r Aft.	Octobe	r Aft.	Seasona	l Total
	Yield	Rank	Yield	Yield	Yield	Rank	Yield	Rank	Yield	Rank
Vernal	4385	2	2010	2925	4935	11	1595	10	10915	8
DuPuits	4016	10	2380	3025	5405	1	1921	2	11342	3
Beaver	4075	7	1830	2836	4666	12	1042	12	9783	12
Tuna	4054	8	2320	2815	5135	6	1555	11	10744	9
Glacier	4427	1	2350	2915	5265	4	1738	8	11430	2
Eynsford	4049	9	2160	3103	5263	5	1976	1	11288	5
Progress (CL-10)	3892	12	1960	3061	5021	9	1696	9	10609	11
Mega	4312	4	2400	29 68	5368	2	1824	6	11504	1
Warrior (NK 507)	4150	5	2240	3028	5268	3	1906	3	11324	4
NK 508	4148	6	2130	2978	5108	7	1881	4	11137	7
A 9 H	3927	11	2070	2901	4971	10	1846	5	10744	9
Europe	4351	3	2230	2870	5100	8	1751	7	11202	6
Mean	4146		2175	2953	5128		1722	ing ang gang dinig dinig tang tang tang tang tang tang tang tan	10996	
L.S.D. 5%	324		129	153	347		191		674	
C.V.	6.8		5.1	4.5	4.7		7.7		4.4	

No winter damage.

Order of maturity and speed of recovery after cutting:

DuPuits, Mega, Glacier, Europe, Eynsford; Tuna, 507, 508; A 9 H; CL10, Vernal, Beaver.

ALFALFA PERFORMANCE TRIAL, 1961 - TEST 570

Seeded in 1961 on 18E

In the section managed as hay and aftermath pasture the difference between the four leading varieties, i.e. disregarding Beaver, was less than 5%. In the pasture section, over the 2-year period, there was an 8% spread. The overall averages for the five varieties for 1962-3 were

Ontario Variegated	9394 lbs.
H.S. Narragansett	9201 lbs.
Vernal	9098 lbs.
Cayuga	9052 lbs.
Beaver	8294 1bs.

As shown by the above averages and by the accompanying tables no one variety has shown any distinct superiority over the others. On the other hand, Beaver, with a yield about 10% lower than that of the other four, can definitely be regarded as unsatisfactory for this area.

ALFALFA, FINAL EVALUATION TRIAL, GUELPH, 1961 SEEDING

Test 570

1963 Yields in Lbs. D.M. (Legume + grass) per Acre

		Hav and	Aftermath	Pasture	Manageme	nt System	nt System Pasture					
Variety	Cut 1 Jun.17	Cut 2 Jul.17	Cut 3 Aug.21	Cut 4 Oct.11	Total	Cut 1 May 31	Cut 2 Jul. 2	Cut 3 Jul.31	Cut 4 Sept.4	Total		
Cayuga	4942 83	1605 96	2400 88	1220	10167	2822 96	2005 99	1667 99	1430 96	7924		
Vernal	5062 75	1380 95	2423 77	1120	9985	3001 88	1867 99	1612 98	1295 94	7775		
Beaver	5162 55	1317 93	2103 71	650	9232	3152 72	1602 97	1362 93	1022 88	7138		
Ont. Variegated	4710 75	1690 98	2435 90	1250	10085	2983 98	2167 100	1570 100	1462 99	8182		
Cornell 3	4772 66	1667 97	2393 89	1360	10192	2626 97	2015 100	1560 100	1387 96	7588		
Mean	4930	1532	2350	1120	9932	2917	1931	1555	1319	7722		

Test 570

Summary of 1962-63 Yields Yields in Lbs. D.M. per Acre

			Hay and Aftermath Pasture						Pa	sture M	anage	ment	
Variety		Hay	Af	t.(2-3 cu	ts)	Total	Rank	Spring	Summer	(3 cut	s)	Total	Rank
Cayuga	1962 1963	3 797 4942		4410 5225		8207 10167		3752 2822		6158 5102		9910 7924	
	Mean	43 7 0	5	4817	3	9187	4	3287	4	5630	2	8917	2
Vernal	1962 1963	4352 5062		4610 4923		8962 9985		3932 3001		5742 4774		9674 7775	
	Mean	4707	2	4766	4	9473	2	3466	2	52 58	4	8724	4
Beaver	1962 1963	4672 5162		3684 4070		83 56 9232		3490 3152		4961 3986		8451 7138	
	Mean	4917	1	3877	5	8794	5	3321	3	4473	5	7794	5
Ont. Var.	1962 1963	4212 4710		4420 5375		8632 10085		4053 2983		6625 5199		10678 8182	
	Mean	4461	4	4887	2	9358	3	3518	1	5912	1	9430	1
Cornell 3	1962 1963	4452 4472		4508 5420		8960 10192		3935 2626		6129 4962		10064 7588	
	Mean	4612	3	4964	1	9576	1	3280	5	5546	3	8826	3
Mean	1962 1963	4297 4930		4327 5002		8624 9932		3832 2917		5923 4805		9755 7722	
	Mean	4613		4665		9278		3374		5364		8738	

ALFALFA PERFORMANCE TRIAL, 1963 - TEST 575

Seeded in 1963 on 11E

This test, a DuPuits type performance trial, included Tuna, Glacier, Alfa, as well as DuPuits. Saratoga bromegrass was sown along with the alfalfa. The test consisted of two sections, one to be managed as hay and aftermath pasture, the other as pasture.

ALFALFA WINTERHARDINESS TRIAL, 1963 - TEST 581

Seeded in 1963 on 11E and 6E

This test contains six strains of alfalfa representative of a quantity of seed imported from Argentina and Australia. It was sown with bromegrass and is to be managed as a hay and aftermath pasture regime.

BIRDSFOOT TREFOIL

BIRDSFOOT TREFOIL PERFORMANCE TRIAL, 1963 - TEST 576

1963 Seeding on 6E

The following strains were successfully established in company with timothy to be handled as pasture, and as hay plus aftermath pasture:

Leo, Fargo, Empire, Viking, Barr, Douglas, O.A.C. Composite.

Fargo originates in S. Dakota, Douglas in Washington State, Barr was sent from Kemptville, presumably of Empire origin. Composite is a mixture of strains derived from Synthetic B.

Throughout the summer, the O.A.C. Composite displayed considerably more seedling vigor than anything else. After this material was cut back in August, the recovery rate as recorded on September 25 was as follows:

Barr, closely followed by Composite and Viking. Douglas noticeably behind Viking. Far behind these came Leo, followed closely and in order by Empire and Fargo.

BIRDSFOOT TREFOIL INTERSPECIFIC HYBRID TRIAL, 1963 - TEST 576H

1963 Seeding on 6E

Seed was collected from the F_1 interspecific hybrids between <u>L. Corniculatus</u> and <u>L. uliginosus</u>, located on 18E. Seed from some of the better early plants was bulked to form an early strain. Similarly medium and late strains were bulked. The three maturity types were seeded in four replicates, the purpose being to gain information on the agronomic performance of these hybrids.

BIRDSFOOT TREFOIL SELECTION NURSERY, 1963

A nursery of about 3400 Empire and 700 Leo plants was established on range E9. The Empire group, consisting of 57 families, represents the third cycle of selection in this type of trefoil. The basis of selection was seed size, seedling vigor, and field performance.

For each of the 57 families 90-150 seedlings were started in the greenhouse and all plants low in seedling vigor were discarded. Fifty thrifty seedlings per family were transferred to the field in May. For some of the more promising families a second series was used. At first bloom the nursery was sprayed with paraquat to remove all vegetation whether trefoil or weeds. Nevertheless, seed was produced on the regrowth and to eliminate the growth of volunteer seedlings simazine was applied at a later date. Considerable damage was done in this nursery by white grubs.

Thirty rows were not sprayed but were hand-weeded. Seed from over 600 plants, representing about 10 from each family was hand harvested and cleaned. Plants with a low volume of seed were discarded and for each of the remaining 570 the weight of 100 seeds was obtained. These values ranged from 94 to 169 mg./100 seeds, the average being 132. The distribution was as follows:

Class:	90-99	100-109	110-119	120-129	130-139	140-149	150-159	1 60- 169
Frequency:	2	24	80	153	156	83	43	20

Family averages, which in most cases was the average of 10 plants, ranged from 115 mg. to 145 mg. It is thought that when, in 1964, selections are made from the entire nursery, families with low average seed weight will be heavily discriminated against.

STRAIN TRIALS IN A WEED-FREE ENVIRONMENT

Five yield trials, one of Empire and four of the Viking type, and each consisting of 64 strains in a lattice design, were seeded on 7,8E on a weed-free environment basis.

The land was prepared and marked out for the trials in May. Time was given to permit weed seeds to germinate and for the seedling to emerge. These were then removed by an application of prometryne. On June 19, the trials were seeded in the usual way. Establishment was quite uneven, varying from poor to good. Irrigation water was applied but to no avail. In mid-summer purslane completely obliterated the rows. Primarily because of unsatisfactory establishment and secondarily because of the weed problem, all five tests were abandoned.

The primary cause of this failure was a combination of dry weather and late seeding. It is suggested that for the weed-free environment technique to be successful, sufficient water must be available in the soil to germinate the weed seeds before the trials are sown, and to ensure germination of the trefoil as soon as it is sown.

Comments on White Clover Strain Trial

Apart from a little injury suffered by California, the test wintered in excellent shape.

At the time of the first cut, May 27, Syn. B was showing a little less vigor, to the eye, than Syn. A, but their yields were identical.

Order of flowering, June 21, ranked from earliest to latest.

Common, C.B. Pasture S-100 New Zealand, Nordic, Kersey Syn. B, C.B. Hay, Pilgrim California, Merit Syn. A, Granladino

June growth - in reverse order to the above, i.e. Granladino most, Common least.

July growth - as in June in the main, but little difference between Syn. A and Syn. B.

August, September, October - no growth.

Test 574 - White Clover - Seeded in 1962 with Orchard Grass Lbs. of Forage D.M. per Acre

	Cut 1 -	May 27	Cut 2 -	June 21	Cut 3 -	Aug. 2		
	Yield	% Leg.	Yield	% Leg.	Yield	% Leg.	Total	Rank
S-100	2010	39	2320	48	867	19	5197	8
California	2167	44	2247	55	1253	51	5667	3
Ottawa A	1944	36	2241	51	1037	37	5222	7
Kersey	2133	50	2303	52	932	45	5368	4
N. Zealand	1910	40	2199	50	720	16	4829	13
Granladino	2055	39	2223	55	1059	50	5337	5
Pilgrim	2156	42	2288	57	1236	50	5680	2
Common	1854	34	2255	50	750	20	4859	11
Ottawa B	1944	39	2184	53	858	47	4986	10
Nordic	2189	41	2236	52	856	27	5281	6
Merit	2279	39	2307	57	1178	55	5764	1
C.B. Pasture	1944	32	2160	47	754	11	4858	12
C.B. Hay	2011	41	2232	49	771	23	5014	9
Mean	204 6		224 5		944	52	5235	
L.S.D. at 5%	159		N.S.		184			
C.V.	6.7%		6.0%		16.9%			

Comments: Based on yield and general vigor, Merit appeared to be the most promising variety.

RED CLOVER

Red Clover, Test 572, 1961 Seeding, Ontario Agricultural College, Guelph

D.M. D.M. in Lbs. per Acre

		1963			196 2			1962-63	
Variety	Cut 1 Hay Jun.18	Cut 2 A'math Jul.31	Season Total	Cut 1 Hay Jun.15	Cut 2 A ^t math Jul.27	Season Total	Cut 1 Hay	Cut 2 Atmath	2-Year Total
Lasalle, east	4314	826	5140	4521	2862	7383	8835	3688	12523
Lasalle, west	4013	678	4691	4475	2643	7118	8488	3321	11809
Lakeland	4199	675	4874	4574	2636	7210	8773	3311	12084
Dollard, found.	3896	503	4399	4180	2657	6837	8076	3160	1123
Dollard, cert.	4104	859	4963	4609	2766	7375	8713	3625	12338
Ottawa, breeders	4062	572	4634	4164	2659	6823	8225	3231	1145
Ottawa, Bishops	2927	508	3435	4210	2543	6753	7137	3051	10188
Ch es apeake	2953	787	3740	4198	2892	7090	7151	3679	10830
Mean	3807	676	4483	4365	2707	7072	8175	3383	1155
L.S.D. 5%	508	N.S.		N.S.	220	N.S.			
C.V.	9%	30%		9%	7%	7%			
English	1893	trace	1893	4369	2458	6827	6269	2458	872
Tetraploid	3907	820	4727	3801	2027	5828	7708	2847	1055

Some Notes on the Red Clover Strain Trial

April, 1963- Winter survivalBadly damaged- Burgess (English variety)Moderate damage- Chesapeake, Ottawa BishopsSlight damage- Dollard, Lasalle, Lakeland, TetraploidNo damage- Ottawa Breeders

July to present time - drought

At the time of the second cutting, July 31, Burgess was reduced to a ground cover of 15-20%, Bishop's 35%, Chesapeake 60%, remainder 70-80%. Ottawa Breeders had the best stand at this date.

ORCHARDGRASS MANAGEMENT TEST, 1959 (601)

The purpose of this experiment was to study the interaction of varieties with levels of fertility and systems of clipping. Both mean performance and variability are being studied, in order to obtain further data on possible systems of variety testing. Five varieties were used and these are listed in the tables according to their relative maturity from Sterling (early) to S-37 (late). Two levels of nitrogen fertility were applied early in the spring. The aftermath received a uniform application. There was some winter damage during 1960-61 and its effect can be seen in the relative yields in 1961 as compared to 1960.

In the analyses of variance for yield, fertility, cutting time and variety mean squares were significant in every case. The interaction of fertility and cutting time was significant for cuts 1 and 2 in both years. As the level of fertility increased, the differences among the cutting times increased. The varietal interactions were significant only in 1961, so more data are required in this regard.

For percent vegetative and percent leaf three mean squares were significant in both years; namely, those for cutting times for varieties and for their interaction. Cutting each variety at its own bloom date naturally resulted in a lower percent vegetative and percent leaf, than when all were cut at the same time. For percent leaf, there was a significant variety x fertility interaction, also.

The only inter-varietal variances which showed any consistent trend, were those for the yields of the first cut. In those, the variances were lowest under the low nitrogen treatment and highest when the varieties were grown with alfalfa.

This experiment has been reseeded, and will be continued.

ORCHARDGRASS MANAGEMENT TEST, 1959 (601)

				Fertil	ity Leve	21	
Cutting Tr	eatment	50 lbs.	N	150 lbs.	N A	lfalfa1/	Mean
A. YIELD	(lbs./acre)						
1. Cut 1	Pasture 2/	2888		3493		3733	3380
	Hay - $(1)\frac{2}{3}$	3910		4928		6142	4990
	- (2)	3465		4466		5250	4390
	Mean	3423		4298		5054	4260
2. Cut 2	Pasture	1155		1393		1956	1500
	Hay - (1)	1008		1218		1148	1130 1160
	- (2) Mean	934 1036		1141 1250		1404 1505	1260
B. PERCEN	T VEGETATIVE						
				Cutting T			
Variety		<u>Hay - (</u>	1)	Hay - (<u>2)</u>	Mean	
Sterling		24.8		27.0		25.9	
Potomac		31.4		32.8		32.1	
Latar		33.1		43.0		38.0	
Aurora S-37		37.2 53.6		48.5		42.8 53.9	
Mean		36.0		<u>54.2</u> 41.1		38.6	
C. PERCEN	T_LEAF ⁵ /						
Variety	Cutting T Hay (1) M Ha		t Mean	50# N	<u>Fertili</u> 150# N	Alfalfa	Mean
Sterling		3.3	and the second s	23.1	23.6	22.8	23.2
Potomac		3.6	23.2 23.3	23.5	23.0	22.0	23.2
Latar		9.6	27.6	27.1	28.0	27.6	27.6
Aurora		0.7	27.4	27.2	27.4	27.9	27.4
5-37		7.8	26.4	25.8	25.3	28.0	26.4
Mean	24.2 2	7.0	25.6	25.3	25.5	25.8	25.6
D. INTER-	VARIETAL VARI	ANCES					
Fertility	Level		<u>Cı</u>	<u>ut 1 - Yi</u>	eld		
50 lbs. N				28150			
150 1bs. N				44700			
Alfalfa				<u>118500</u>			
Mean				53000			
C. VARIET	Y MEANS - YIE	LD, CUT	<u>1</u>				
/ariety			1960	<u>)</u>	1961		
Sterling			5610	Ъ	3930	a	
Potomac			5990		3460		
Latar) ab	2810		
Aurora S-37			5520 4960		2940 1560		
States and a second second	efer only to	the ore					
	hay (1) treat		-	-			
3/ Under	hay (2) treat			-			
anthes	is.	-					
4/ A11 eh	oote without		1 . 1	1 1			-

5

Ĵ

Ì

Î

 $\frac{4}{5}$ All shoots without a visible head were classed as vegetative. $\frac{5}{5}$ Pertains only to those shoots with a visible head.

ORCHARDGRASS SELECTION NURSERY, 1960 (618)

Out of 6,000 plants, 151 were selected and put into 4 polycross nurseries. These plants were selected on the basis of visual vigour ratings during the year, height at anthesis and maturity. All were average or above in spring vigour, superior in midsummer vigour, tall, and of the same general maturity as Frode. Polycross nurseries #1, #2, and #3 are made up of plants selected under low, medium and high nitrogen levels, respectively. Polycross #4 is comprised of 10 plants selected solely on visual observations at the time of anthesis.

All polycrosses were planted in August and September, 1963. Polycross #4 was planted at Ridgetown, and the remainder at O.A.C.

Source	PX #1	PX #2	PX #3	PX #4	Total
Frode	8	13	3	4	28
Aron	11	6	7	1	25
G-1585 (Netherlands)	11	6	2	1	20
Hercules	5	4	9	1	19
Danish	6	9	1	2	18
Trifolium	4	3	5	0	12
Hespeler Polycross	4	3	4	0	11
G-1588 (Italy)	1	0	3	1	5
G-1586 (N.Z.)	1	2	0	0	3
Potomac	2	1	0	0	3
Tardus II	0	1	2	0	3
Avon	1	0	0	0	1
G-1583 (Turkey)	0	1	0	0	1
G-1591 (Greece)	1	0	0	0	1
G-1596 (Turkey)	1	0	0	0	1
Chinook	0	0	0	0	0
Total	56	49	36	10	151

Number of Plants Selected for Polycross Nurseries, 1963

ORCHARDGRASS - LOCAL COLLECTIONS AND INTRODUCTIONS, 1961

In 1960, 55 collections of orchardgrass seed were made in the counties of Oxford, Bruce and Simcoe. Seed was collected from orchardgrass plants growing along roadsides and in meadows which appeared to have been down for some time.

In 1959, 22 introductions of orchardgrass from various parts of the world were obtained from the U.S.D.A. These introductions plus the collections made above were evaluated in 1962-63. Out of these 77 seed lots, seven were selected as being worthy of further study. These lots were chosen on the basis of relative vigour, height, leafiness and colour in relation to the variety, Frode. These seed lots will be used as sources for any new selection nursery.

Entry No.	Code	Origin	Description
26	0-107	Oxford Co. Roadside near Innerkip	Later than Frode. Dark green color
38	0-156	Simcoe Co. Unclipped pasture	Frode maturity. Leafy.
47	0-163	Simcoe Co. Roadside near Tottenham	Frode maturity. Tall.
52	0-126	Bruce Co. Pasture field	Frode maturity. Very vigorous in spring.
63	G-1580	Introduction from Sweden	Similar to Frode.
64	G-1581	Introduction from Sweden	Early. Leafy. Dark green.
76	G-1599	Introduction from Argentina	Late. Good spring vigor.

8

Experiment 622 - Superior Entries Selected, 1963

ORCHARDGRASS CLONES AND SOIL FERTILITY, 1962 (625)

In Experiment 618, nitrogen fertilizer was applied at three different rates to spaced plants in a 3' x 3' spacing. No differences in the performance of these plants due to level of nitrogen could be detected. This lack of response could have been due to the wide spacing, an initial high level of nitrogen, or a combination of these two factors. To study this problem further, 20 clones were propagated vegetatively and planted at the Kaine farm in a split-plot design. These plants were grown under six different treatments - three spacings (whole plots) and two levels of nitrogen (sub-plots). The levels of nitrogen were 100 and 300 lbs. per acre applied in three equal applications.

There was a small difference between the nitrogen treatments in almost every case. However, the difference was generally as great in the $3! \times 3!$ spacing as in the $1! \times 1!$ spacing. This study is being continued.

Tre	eatment		Characteristic									
Spacing	Fertilizer	Spring Vigour	Hay Vigour	Heading Date	Plant Height	Aftermath Vigour	Fall Vigour					
1" x 1"	Low	4.0	4.3	11.6	34.4	3.4	1.7					
	High	3.9	4.4	11.9	35.4	3.7	1.9					
21 x 21	Low	2.9	3.4	14.2	28.1	4.5	3.7					
	High	3.0	3.8	14.5	27.7	4.8	4.0					
31 x 31	Low	3.8	4.6	12.3	29.7	4.5	4.3					
5 8 5	High	3.9	4.9	12.7	30.4	4.5	4.6					

STUDIES ON MALE STERILITY (635)

During 1963, plants of orchardgrass, timothy and bromegrass were screened for non-shedding of pollen. A few heads on each plant were bagged before anthesis, and at anthesis the remaining heads were examined for evidence of pollen. At seed maturity, the bagged heads were harvested from each plant. From this material, information will be obtained on levels of self-fertility. Out of 6,000 plants of orchardgrass, 19 were selected for lack of pollen shedding; in timothy, 4 out of the 1,600 screened; and in bromegrass, 1 out of 4,000.

In the fall of 1963, these male sterile plants as well as a number of normal plants were brought into the greenhouse. Heading was induced and at anthesis, only 12 of the orchardgrass plants and 2 of the timothy plants did not shed pollen. These plants were crossed in the growth chamber with a number of normal plants.

In orchardgrass, preliminary results indicate that about 10% of the plants are self-sterile, and about 5 plants per 1,000 set as much seed when selfed as when crossed.

Designation	Nursery Location	Source	Heading Date
	(B-304)	ی بالای	میں یہ ایک اور کہ شہریہ سی پر اسی ہیں۔
N-1	1122-12	Chinook (Alberta)	June 5
N-2	1128-6	Avon (Mac. College)	June 5
N-3	1129-2	Frode (Sweden)	June 8
N-4	1125-7	Frode (Sweden)	June 8
N-5	1129-1	Frode (Sweden)	June 11
N-6	1125-2	Frode (Sweden)	June 11
N-7	1125-14	Frode (Sweden)	June 11
N-8	1125-18	Frode (Sweden)	June 11
N-9	1125-16	Frode (Sweden)	June 12
N-10	1228-4	Frode (Sweden)	June 12
N-11	1125-9	Frode (Sweden)	June 19
N-12	1129-7	Frode (Sweden)	June 19
N-13	1228-2	Frode (Sweden)	June 15
N-14	1228-3	Frode (Sweden)	June 1

Orchardgrass - Normal Clones, 1963

EX PER IMENT	635 -	ORCHARDGRASS	-]	MALE	STERILE	CLONES	IDENTIFIED,	1963

.

Group	Designation	Nursery Location	Source	Heading Date (1963)	Seed Set Under Bag (seeds/head)	Vigour (Jun.4/63)	O.P. Seed Set	Growth Chamber 1963-64 Crosses Made
<u>e = Nor</u>	n-Shedding of	Pollen						
	MS-1	1121-2	Introduction (Turkey)	Jun.11	0	5	Fair	N-8, -7.
	MS-3	1201-4	Oron (0.A.C.)	Jun. 5	0	4	Good	N-1, -2, -7.
	MS-4	1201-14	Oron (0.A.C.)	Jun. 5	1-2	5	Good	N-2, -13.
	MS-5	1203-4	Chinook (Alberta)	Jun.11	0	3	Good	N-1, -6.
	MS-7	2516-20	Introd. (Turkey)	Jun.19	0	3		N-12.
	MS-8	2637-7	Introd. (Turkey)	Jun.10	0	6	Good	N-5, -8, MS-17.
	MS-10	3711-9	Introd. (Turkey)		-	6		N-8, -13, MS-13.
	MS-11	3811-3	Oron (O.A.C.)	Jun.13	0	6	Good	N-9, -10.
	MS-12	3813-8	Introd. (Turkey)	Jun.10	0	6	Poor	N-5, -8.
	MS-15	4403-13	Introd. (Netherlands)	Jun.10	0	5	Good	N-8, -10.
	MS-18	5708-9	Hercules (Ottawa)	Jun.10	1-2	3	Good	N-5, -7, MS-14.
	MS-19	5710-17	Introd. (Greece)	Jun.11	1-2	5		N-5, -7, MS-9.
) = Pla	ints Non-Sheddi	ing in Field	, Shedding in Greenhouse	<u>e</u>				
	MS-2	1107-15	Hercules (Ottawa)	Jun.15	0	1		N-3, -11.
	MS-6	2416-9	Oron (0.A.C.)	Jun.19	0	4		N-11,-14,MS-10,-13
	MS-9	2637-10	Introd. (Turkey)	Jun.10	0	5		N-6, -8, MS-19.
	MS-13	3918-12	Introd. (Turkey)	Jun.15	0	4		N-12, -14, MS-10.
	MS-14	3918-15	Introd. (Turkey)	Jun.12	0	5		N-6, -7, MS-14
	MS-16	4411-1 5	Introd. (Turkey)	Jun.13	0	5		N-9, -10.
	MS-17	5630-7	Potomac (Maryland)	Jun. 8	1-2	5		N-4, MS-8.

			Heading		Growth Chamber
	Location	••.	Date	Vigour*	1963-64
esignation	(D-18)	Source	(1963)	(July 22/63)	Crosses
MS-1**	56-20	Medon (2000 r)	July 4	4	N-24
MS-2	71-05	Climax (10,000 r)	July 1	4	N-4
MS-3	71-18	Climax (10,000 r)	July 2	5 ໍ	N-6
MS-4**	74-06	Climax (check)	June 27	6	None

EXPERIMENT 635 - MALE-STERILE CLONES - TIMOTHY. IDENTIFIED 1963.

*

Rating: 0 (poor) to 9 (excellent). Shed pollen in growth chamber, 1964. **

.

Normal Plants - Timothy

De si gnation	Nursery Location	Source	Heading Date
	n an	naan ministra maraka di kalendi dan dah dari kanya dan din kanya dan di kanya na yang dan dah da kanya dari ka	(1963)
N-1	54-17	Climax (2000 r)	June 27
N-2	64-13	Medon (10,000 r)	June 27
N-3	82-01	Medon (check)	Ju1y 2
N-4	87-14	Climax (2000 r)	July 2
N-5	66-18	Climax (10,000 r)	July 4
N-6	54 -2 0	Climax (2000 r)	July 4

O.E.C.D. Test (Timothy), 1962 (631)

At the request of Mr. Jan Pauksens, Plant Products Division, a timothy test sent out by the O.E.C.D.* was planted in 1962. This test was designed to evaluate the differences among lots of certified seed. Two varieties, labelled A and B, were each represented by 4 different seed lots, and these were grown with 6 named varieties. In our test, seed lots of Variety A were relatively uniform. However, there were large differences among the lots of B. One lot of Variety B was extremely late, while another had many prostrate plants.

* Organization for European Community Development.

.

EXPER IMENT	631	-	O.E.C.D.	TEST	(TIMOTHY),	1962
-------------	-----	---	----------	------	------------	------

Sample	Code	Entry No.	May 14 Spring Vigour	Jun.18 Height	Date Headed	Date Initial Bloom	Date 50% Bloom	H eight July 4	No. heads/ ft. of row Jul. 4	Comments
Otoffe, basic	PP13	13	2.5	31''	Jun.25	Jun.27	Jul. 1	33"	40	
Hudemij, "	PP14	12	4.5	23"	Jun.25	Ju1. 4	Jul. 8	30"	12	Appears variable. Pasture type.
Variety A	PP40	1	2.5	2 9''	Jun.18	Jun.2 5	Jun.27	36"	37	
11	PP41	5	2.0	29"	Jun.18	Jun.25	Jul. 4	35"	40	
11	PP42	6	2.5	32"	Jun.18	Jun.27	Jul. 4	36"	27	
**	PP43	7	2.0	29"	Jun.20	Jun.25	Jul. 4	36"	37	
Variety B	P P4 4	8	5.0	911	Ju1.22	Ju1.30	Aug. 3	12"	0	
11	PP45	4	4.0	21"	Jun.25	Jun.28	Jul.14	37יי	10	^A ppears variable. Pasture type.
**	PP46	3	4.0	27''	Jun.20	Jun.27	Jul. 1	35"	20	Pasture type.
11	PP47	2	3.0	32"	Jun.20	Jun.27	Jun.30	34"	40	Some prostrate stems
King	Lat.NL1907	11	5.0	911	Jul.15	Ju1.25	Aug. 1	11"	0	
Omnia	Ca61-4006	9	2.5	28"	Jun.25	Jun.27	Ju1. 4	31"	33	Some prostrate stems
Climax	61-91474	14	3.0	32"	Jun.25	Jul. 1	Jul. 4	33"	30	
Drummond	TY5-15	10	4.0	20"	Jul. 4	Ju1.10	Ju1.15	27"	25	

BROME-ALFALFA COMPETITION STUDY - GUELPH - 1960 (TEST 217)

This trial was seeded on range B-1 in 1960 to obtain additional information on the competitive effects of brome varieties and alfalfa varieties. The trial included Saratoga, Canadian Common and Lincoln bromegrass as representing different levels of aggressiveness. Saratoga represents the most competitive level and Lincoln the least competitive. Climax timothy and Frode orchardgrass were also included to compare their competitive effects on alfalfa with those of brome. The grass varieties were seeded in mixture with Vernal alfalfa and DuPuits alfalfa representing a less agressive alfalfa variety and a highly aggressive alfalfa variety respectively. The seed mixtures used were 10 lbs./acre alfalfa and 10 lb./acre of bromegrass; 8 lbs./acre of orchardgrass; 6 lbs./acre of timothy. The portion of the test including DuPuits alfalfa was discontinued in the spring of 1962 due to non-uniform winterkill of the alfalfa in these plots and the negligible grass content in the plots.

Two management levels, pasture and hay, were also used. Under the pasture management, the plots were cut prior to bud or at very early bud of alfalfa. Under the hay management, plots were harvested at first show to 1/10 bloom of alfalfa. This meant that the grasses were in the vegetative stage under pasture management (except orchardgrass) and between heading and anthesis under the hay management except orchardgrass which was post-anthesis.

The trial was fertilized with 300 lbs./acre of 0-20-20 fertilizer during early September each year.

A summary of the yield data of the mixtures including Vernal alfalfa for the three years 1961-63 is reported in Tables 1, 2 and 3. All species and varieties of grasses yielded approximately the same in mixture with Vernal alfalfa except for orchardgrass which had a slightly lower yield. This was the case under both hay and pasture management. Under pasture management, the Climax timothy mixture appeared very slightly superior; however, the data of Tables 2 and 3 indicate that this was due to greater legume yield as a result of less grass competition. The level of grass competition also explains the lower yield of the Frode orchardgrass mixture. With the increased competition of the orchardgrass the alfalfa component yielded less and was not made up by the orchardgrass yield. As a result, the mixture yield was reduced.

The order of competitiveness of the grass, most to least, was Frode orchardgrass, Saratoga, Can. Common bromegrass, Climax timothy, and Lincoln bromegrass under the hay management. Under pasture management, Climax timothy appeared slightly more competitive than Can. Common bromegrass. As expected, Frode orchardgrass provided more grass in the aftermath than Saratoga; however, in the first harvest of each year, Saratoga provided the highest grass content to the mixture.

Lincoln bromegrass exhibited very little competitive ability. This fact could explain many of the complaints regarding the establishment of brome in mixture. Lincoln should be deleted from the recommended brome variety list as soon as adequate seed supplies of Redpatch are available.

Although Saratoga appears to be highly competitive, total mixture yield does not indicate that it is too competitive. If less grass is desired in the mixture, then Saratoga should be seeded at 2 to 3 lbs. less per acre.

The 1963 data are presented in Tables 4 to 6. Previous years' data can be found in previous annual forage reports.

		Cut	1			Afterma	th Total			Season	Total	
Management and Variety	1961 Jun.1	1962 May 28	1963 Jun.4	Total	1961 ¹	1962 ²	1963 ³	Total	1961	1962	1963	Total
PASTURE												
/ernal +												
Can. Common	3370	3737	3377	10484	69 67	4836	3785	15588	10337	8573	7163	26073
Lincoln	3430	3725	3368	10523	7156	4917	3865	15938	10586	8642	7233	26451
Saratoga	3804	3972	3514	11290	6855	4519	3710	15 0 84	10659	8551	7157	263 57
Climax	3391	399 5	3458	10844	7527	4829	4250	166 0 6	1091 8	88 2 4	7703	27445
Frode	3568	2993	2860	9421	6877	4004	3760	14641	10445	6997	6 620	24062
Alone	3479	3587	3153	10219	7274	491 8	3505	15697	107 53	8505	6658	25916
lean Pasture	3507	3668	3288	10463	7109	4681	3812	15602	10616	8349	7089	26054
IAY	Jun.21	Jun.7	Jun.18									
Vernal +												
Can. Common	50 66	3976	4382	13424	56 90	4621	2089	12400	10756	8597	6471	25824
Lincoln	5403	3792	4164	13359	56 70	5032	2229	12931	11073	8824	63 92	26239
Saratoga	5610	4095	4492	14197	5641	4492	21 72	12305	11251	8587	6664	26502
Climax	5095	3958	4297	13350	5624	4938	1991	12553	10749	8916	6288	261 53
Frode	5573	2732	3552	11857	6181	3635	1788	11604	11754	6367	5340	23451
Alone	4807	3815	3 6 97	12319	56 90	5278	20 38	1300 6	10497	9093	5735	2,5325
lean Hay	5259	3 728	4097	13084	5771	4664	2 051	124 86	11030	8394	6146	,25570
lean Hay + Past	ure											
-	4383	3696	3693	11772	6440	4774	1881	13095	10823	83 70	6619	25812

Table 1.Summary of the yield data (pounds per acre dry matter) from the Brome-Alfalfa Competition Study - Guelph -1960 (Test 217) over the three years (1961, 1962, 1963).Legume + Grass Yield Data.

1 three cuts on pasture management; two cuts on hay management.

2 two cuts on pasture management; two cuts on hay management.

3 two cuts on pasture management; one cut on hay management.

		Cu	it 1			Aftermat	h Total		Season	Total		
Management and Variety	1961	1962	1963	Total	1961 ¹	1962 ²	1963 ³	Total	1961	1962	1963	Total
PASTURE												
Vernal +												
Can. Common	632	556	1008	219 6	686	2 83	579	1548	1318	849	1587	3754
Lincoln	533	315	616	1464	2 50	31	358	639	782	346	973	2101
Saratoga	1 62 3	1270	1575	4 468	1739	6 20	1490	3849	3362	1890	3064	8316
Climax	350	1072	1139	2 561	491	312	758	1561	841	1384	18 97	4122
Frode	1669	1328	1415	4412	2649	90 8	1803	536 0	4318	2236	3218	9772
Mean Pasture	962	9 0 8	1150	3020	1162	431	9 9 8	2591	2124	1341	2148	5613
HAY											•	
Vernal +												
Can. Common	1493	2049	1968	5510	1781	816	8 90	3487	3 27 4	2 865	2 858	8 997
Lincoln	1129	1324	1631	4084	468	255	391	1114	1597	1579	2022	5198
Saratoga	3016	2694	2315	8025	2177	1046	1018	4241	5193	3740	3333	12266
Climax	759	1392	1808	3959	424	245	250	919	1183	1637	2016	4836
Frode	25 27	1709	1214	5450	3021	1314	6 9 9	5034	5548	3023	1913	10484
Mean Hay	1785	1834	1787	540 6	1575	735	649	2959	3360	2569	2428	8357
Mean Hay + Pasture	1374	1371	1469	4214	1368	583	536	2 487	2742	1955	2288	6985

Table 2.. Summary of the yield data (lbs./acre, D.M.) from the Brome-Alfalfa Competition Study - Guelph - 1960 (Test 217) over the three years (1961, 1962, 1963). Grass Component Yield Data.

1 three cuts on pasture management; two cuts on hay management.

2 two cuts on pasture management; one cut on hay management.

3 two cuts on pasture management; one cut on hay management.

		Cut	1			Cut 2			Cut 3				Cut 4
Management and Variety	1961	1962	1963	Mean	1961	1962	1963	Mean	1961	1962	1963	Mean	1961
PASTURE													
Vernal +													
Can. Common	18.6	15.4	31.0	21.7	13.2	6.4	17.5	12.4	7.1	6.1	15.0	9.4	4.1
Lincoln	15.6	8.7	18.0	14.1	5.3	0.9	10.0	5.4	1.3	0.3	9.0	3.5	2.0
Saratoga	42.2	31.6	43.5	39.1	28.3	14.7	35.0	26.0	25.1	12.0	39.0	25.4	9.0
Climax	10.3	27.0	33.3	23.5	11.8	8.8	23.0	14.5	0.0	3.4	17.0	6.8	3.8
Frode	44.8	45.1	50.0	46.6	36.7	23.1	42.5	34.1	36.1	24.8	53.0	38.0	57.1
Mean Pasture	26.3	21.7	35.2	27.7	19.1	9.0	25.7	17.9	13.9	8.0	26.7	16.2	15.2
HAY													
Vernal +													
Can. Common	29.4	52.0	45.0	42.1	32.0	20.1	42.5	31.5	30.8	13.1		14.6	
Lincoln	21.1	34.6	39.0	31.6	10.2	5.9	19.0	11.7	4.9	3.5		4.2	
Saratoga	52.6	66.0	52.0	56.9	36.3	25.4	47.0	36.2	43.2	20.4		31.8	
Climax	14.6	35.2	38.0	29.3	7.4	6.4	12.5	8.8	7.4	3.1		5.2	
Frode	44.4	62.5	38.0	48.3	42.9	35.7	40.0	39.5	58.9	38.8		48.9	
Mean Hay	32.4	45.1	42.5	40.0	2 5.8	16.7	28.9	23.8	29.0	13.6		21.3	
Mean Hay + Pastur	e 29.4	33.4	38.9	33.9	22.4	12.8	27.3	20.8	21.4	10.8		16.1	

Table 3. Percent Grass in the mixtures over the three years, 1961-62-63, from the Brome-Alfalfa Competition Study -Guelph - 1960 (Test 217). Percent Grass.

		Legume	Component	t		Grass Co	omponent			Legume -	- Grass*	
Management and Variety	Cut 1 Jun. 4	Cut 2 Ju1.18	Cut 3 Sept.5	Season Total	Cut 1 Jun. 4	Cut 2 Ju1.18	Cut 3 Sept.5	Season Total	Cut 1 Jun. 4	Cut 2 Ju1.18	Cut 3 Sept.5	Seasor Total
PASTURE												
Vernal +												
Can. Common	2047	1349	1656	5052	1008	266	313	1587	3377	1643	2142	7163
Lincoln	2218	1545	1711	5474	616	171	187	973	3368	1771	2094	7233
Saratoga	1619	1090	1026	3735	1575	576	914	3064	3514	1649	2061	7157
Climax	2059	1604	1517	5180	1139	426	332	1897	3458	2049	2201	7703
Frode	1445	938	1017	3401	1415	675	1128	3218	2860	1613	2147	6620
Alone	2314	1376	1571	5261					3153	1540	1965	665 8
Mean Pasture	1950	1317	1416	4684	1150	423	575	2148	3288	1710	2102	7089
HAY	Jun.18	Aug. 2			Jun.18	<u>Λug. 2</u>			Jun.18	Aug. 2		
Vernal +												
Can. Common	2397	1128		3525	1968	890		2 858	4382	2089		6471
Lincoln	2533	1617		4150	1631	391		2022	4164	2229		6392
Saratoga	2095	1062		3157	2315	1018		3333	4492	2172		6564
Climax	2455	1473		3927	1808	250		2016	4297	1991		628 8
Frode	2339	1090		3429	1214	699		1913	3552	1788		534 0
Alone	3015	1648		4663					3697	2038		573 5
Mean Hay	2472	1336		3808	1787	6 49		2428	4097	2051		614 5
Mean Hay + Pas	t. 2211	1327		424 6	1469	536		2288	3693	1881		6619
L.S.D.			,									
Management .05	388	N.S.		260	118	61		316	454	225		253
.01		N.S.		407	185	96		495	712	352		39 5
Entries .05		252	398	170	259	13 5	146	133	248	218	N.S.	12 9
.01		336	539	229	347	182	199	369	330	291	N.S.	172
Man.x Ent05		N.S.		240	366	191		547	N.S.	N.S.		N.S.
.01		N.S.		320	503	257		734	N.S.	N.S.		N.S.
C.V. (%)	17.0	23.1	23.7	4.9	21.3	30.6	19.2	20.5	8.2	14.1	10.4	2. 2

Summary of the Yield Data (pounds per acre dry matter) from the Brome-Alfalfa Competition Study - Guelph - 1960 (Test 217). 1963 Results. Table 4.

Table 4. (Continued)

Mean Yields (D.M. lbs./acre) of the Grass Varieties over the two systems of management in the Brome-Alfalfa Competition Study - Guelph - 1960 (Test 217). 1963 Results.

		Legume Component				Grass Component			Legume + Grass			
	Cut 1	Cut 2	Cut 3*	Season Total	Cut 1	Cut 2	Cut 3*	Season Total	Cut 1	Cut 2	Cut 3*	Seasor Total
Vernal +												
Can. Common	2222	1238	1656	42 88	1488	578	313	2222	3880	1866	2142	6817
Lincoln	2376	1581	1711	4812	1123	281	187	1497	3766	2000	2094	6813
Saratoga	1857	107 6	1026	3446	1945	797	914	3198	4003	1911	2061	6911
Climax	2256	1539	1517	4554	1473	338	332	1957	3877	2017	2201	6995
Frode	1892	1014	1017	3415	1314	687	1128	2565	3206	1701	2147	5980
Alone	2 665	1512	1571	4962				****	3425	1789	1965	6197

* Mean of the pasture management only.

Table 5. Mean Percent Grass in the Mixture in 1963 for Test 217.

	Cut 1	Cut 2	Cut 3
	an a	PASTURE MANAGEMENT	nan a sa an
Vernal +	21.0	17.5	15.0
Vernal + Can. Common	31.0		
Lincoln	18.0	10.9	9.0
Saratoga	43.5	35.0	39.0
Climax	33.3	23.0	17.0
Frode	50.0	42.5	53.0
Mean of Pasture	35.2	25.7	26.1
		HAY MANAGEMENT	
Vernal + Can. Common	45.0	42.5	
Lincoln	39.0	19.0	
Saratoga	52.0	47.0	
Climax	38.0	12.5	
Frode	38.0	40.0	
Mean of Hay	42.5	28.9	
-	38.9	27.3	

دى سر

	Ground Cover %	Grass Stand %
PASTURE MANAGEMENT		
Vernal + Can. Common	86	26
Lincoln	85	16
Saratoga	88	40
Climax	90	35
Frode	92	58
Alone	82	8
HAY MANAGEMENT		
Vernal + Can. Common	82	38
Lincoln	82	35
Saratoga	88	45
Climax	84	32
Frode	80	56
Alone	80	9

Table 6. Percent ground cover and percent grass of the ground cover for the grass-legume mixtures of the Brome-Alfalfa Competition Study - Guelph - 1960 (Test 217). April, 1963.

	Seed Yield per plot in grams	Seed Yield in lbs./acre	100 Seed weight in grams	Seed Fertility in percent
20-9	31.0	330.4	.472	43.6
21-1	52.0	554.3	.534	55.0
36-16	16.8	180.0	.468	23.3
126-7	60.6	645.5	.48 6	57.6
133-2	45.7	486.8	.488	40.4
145-9	32.7	353.0	.468	59.0
149-19	36.0	383.8	.490	44.3
152-6	47.7	508.1	.480	41.1
187-13	31.7	337.6	.454	35.4

NURSERY IB

NURSERY II Location - Valeriote formerly DeVos

	Seed Yield per plot in grams	Seed Yield in lbs./acre	100 Seed weight in grams	Seed Fertility in percent
21-1	45.1	480.9	.544	40.1
47-2	34. 6	368.3	.424	49.0
56-1	26.7	284.3	.412	27.4
126-12	56.7	604.1	.442	43.5
128-16	31.2	332.8	.440	47.3
139-16	57.5	613.6	.454	57.0
151 -2	26.2	279.5	.406	22.3
154-5	35.7	380.2	.486	39.0
162-5	35.1	374.3	.478	45.0

Yield data and other available data for 1963 are presented in the 1963 Report on Field Trials of Varieties and Mixtures in Ontario. A summary of the yield data from 1961, 1962 and 1963 is also presented in the Report. Material is available from each test year for <u>in vitro</u> digestibility evaluation; however, this evaluation has not been completed at this time.

In 1963, three replications were used to obtain seed production data. In addition, seed weight per 100 seeds was also determined as an index of quality, and the percent of fertile florets was determined. Percent fertility was calculated from the number of potential florets and the number of florets containing seeds in three spikelets on each of two panicles.

The data are presented below. All attributes measured were low, no doubt reflecting the drought conditions which prevailed during the growing season of 1963. Saratoga had an extremely low yield of seed. Redpatch, although lower than Lincoln, had a much better yield than Saratoga. This difference in yield between Redpatch and Saratoga could be accounted for by the superior fertility percent and seed weight of Redpatch over Saratoga. Lincoln, as usual, had a low seed weight. Rather surprising was the low seed weight of Carlton. The high percent fertility of Carlton gave a relatively high seed yield for Carlton.

Variety	Seed Yield in 1bs./acre	Weight of 100 Seeds in grams	Fertility %
Carlton	242	.2892	67.5
Sac	251	.3220	48.4
Common	198	.3388	44.3
Lincoln	305	•2960	55.3
Saratoga	120	.3020	38.4
Redpatch (Ott.Syn.C)	202	.3440	49.2
Ott. Syn. B	126	.3292	38.7
L.S.D05 level	290	.02 36	N.S.
.01 level	N.S.	.0332	N.S.
c.V. (%)	25.01	4.16	24.8

Seed yield, seed weight and percent fertility, in 1963, of seven brome varieties in the Brome Synthetic Test, 1960, Guelph (Test 218)

Seed Increase of Bromus catharticus and B. autleticus

Four introduced strains of <u>Bromus catharticus</u> and one strain of <u>B. autleticus</u> were seeded for seed increase. Quite good seed yields were obtained. Data were not obtained with regard to actual seed yields per acre.

These strains had looked the most promising in the test of annual brome species and in limited other testing. Seed was increased for additional testing.

PLANT SELECTIONS FROM SOURCE NURSERIES

1963

Selected plants from two of the three source nurseries were transferred to a holding nursery on Range E-5. Plants were selected on the basis of morphological growth type, phenotypically "superior" plants, high seed weight and other miscellaneous reasons. 184 selections were obtained from the source nursery on Range D-1 and 202 selections were transferred from the source nursery on Range D-12.

PLOT UNIFORMITY STUDY ON PURE STAND BROME AND ALFALFA-BROME MIXED STAND - 1961 (TESTS 232, 233)

A pure stand block of Saratoga brome and a mixed stand block of Saratoga brome and Vernal alfalfa were established in 1961.

This material was harvested in 1963 similar to the methods used in 1962. That is, the material was harvested at the bloom stage in three by three foot basic units. Approximately 450 basic units were harvested from each of the pure and mixed stands. The data are now waiting statistical analyses in the statistical service laboratory. Brome Variety Screening Trial, 1963 (234)

This trial includes nine new brome synthetics which will be evaluated relative to recommended varieties. The trial is located on D-17, and was planted on May 3. No companion crop was used. Plot size is $5^{\circ} \ge 16\frac{1}{2}^{\circ}$ with 3° at the front of plots harvested repeatedly as pasture; 5° at rear of plot overseeded with Vernal alfalfa (10 lbs./acre); and center of plot area harvested for yield. It was seeded at the rate of 12 lbs. per acre.

The entries include:

Saratoga - check
 Lincoln - check
 S-6324 - Sask. Northern type synthetic (9 clones) - Syn. 1 gen.
 S-5824 - Sask. Southern type synthetic (12 clones) - Syn. 2 gen.
 Ott. Syn. D - Ott. high seed set synthetic - Syn. 1 gen.
 Ott. Syn. 6 - Ott. southern type pasture synthetic - Syn. 1 gen.
 Ott. Syn. 7 - Ott. restricted creeping synthetic - Syn. 1 gen.
 Guelph Syn. 1 - Nine high seed weight clones - Syn. 1 gen.
 S-6325
 Brandon 986
 Brandon 988

This trial established well with all varieties appearing to have the same stand except the Guelph Synthetic 1 which was somewhat lighter. However, the Guelph Syn. 1 had outstanding seedling vigor and was superior to Saratoga in this respect. It had a more gross appearance than did the other varieties. S-5824 appeared to have similar vigor to Saratoga. Lincoln had the poorest vigor along with S-6325, Ott. Syn. 6 and 7. The remainder appeared to be intermediate between Saratoga and Lincoln for seedling vigor.

Brome Variety Performance Trial, 1963 (235)

This test is to compare the relative performance of new brome varieties and recommended varieties in mixture with Vernal alfalfa in order to consider the new varieties for recommendation and/or license.

Seeded on D-17, May 3, at seeding rate of 10 lbs./acre of brome and 10 lbs./ acre Vernal alfalfa.

Entries include:

1) Saratoga

ľ

- 2) Lincoln
- 3) Redpatch (Ott. Syn. C) 21 clone southern type synthetic Syn. 2 gen.
- 4) Blair (R.P. 100) 8 clone southern type synthetic Syn. 2 gen.
 - (Rudy Patrick Seed Co.)
- 5) Sac southern type Syn. 3 gen.

This test established satisfactorily. In mid-July the vigor of brome varieties was best for Saratoga and decreased through Redpatch, Blair, Sac and Lincoln. This order describes the stand of grasses in the mixture as well. Seed Yield Test of Brome and Orchard Varieties, 1963 (236)

This trial was seeded in order to obtain seed production data from the recommended varieties and some potential varieties of brome and orchardgrass. The trial is located on D-17 and was seeded May 8 in rows 3° apart and 16½° long at the seeding rate of 5 lbs./acre for brome and 4 lbs./acre for the orchard varieties. The entries include the following brome varieties: Saratoga, Lincoln, Redpatch, Ottawa Syn. D., Blair, and S-6324; orchard varieties: Frode, Tardus II, Rideau, Coxa, Pennlate, and Motycka. The varieties established satisfactorily with uniform stands.

Annual Phalaris Species, 1962 (616-2)

Thirteen annual species of the genus <u>Phalaris</u> were evaluated in relation to perennial ryegrass and common reed canarygrass. Most of the species were less vigorous in the spring than perennial ryegrass, yet were of the same general maturity. As a result, many of them had produced less forage by anthesis. Seed was harvested from four species for further evaluation.

			nga naga ngangan inggi nan inggi gan nga ngangan nan inggi gan ngangan nan		Jul	.y 4 <u>3/</u>
Species			Origin	June 15 Vigour <u></u> /	Height 2/	Stage
aftere og i den genaderhen vig i de			ananan an	na - an	(ins.)	an a
Pha laris	canariensis	#1	Iran	3	19	Headed
11	11	#2	Brazil	3	24	Bloom
17	Ħ	#3	Turkey	2. 5	24	Bloom
11	11	#4	Iran	2.5	17	Headed
H	11	#5	Jordan	2.5	24	Bloom
11	paradoxa		Turkey	2.5	22	Headed
**	minor		Argentina	1	24	Bloom
11	cverulescen	s #1	Turkey	2.5	22	50% Heade
11	angusta		Argentina	4.5	12	Headed
**	daviesii		Australia	5	6	Boot
**	cverulescen	s #2	U.S.A.	4	12	Headed
11	tuberosa #1		U.S.A.	4.5	8	Boot
11	tuberosa #2		U.S.A.	4.5	12	Headed
н	arundinacea		Canada	5	6	Vegetativ
Lolium m	ultiflorum			2	20	Headed

P. cverulescens #1

ANNUAL FORAGES - GUELPH LOCATION

1963

Name	Туре	Yield Lbs. D.M./A.	% Moisture at harvest (%)
Sudan SX-11	Sorghum sudan hybrid	10819	21.7
Sudangrass	Piper variety	6944	29.0
R.P. 30F	Sorghum sudan hybrid	10500	18.2
R.P. Mor-Su	18 91 19	133 72	27.9
Funk 77F	11 11 11	11658	23.1
Funk 92F	17 12 13	13186	20.0
Funks 101F	ft 11 11	10085	20.6

Planted:	June	3

Harvested: September 18

Row Width: 27"

14

ł

Seeding Rate: 4 lbs./acre sorghum sudan 20 lbs./acre sudan

ANNUAL FORAGES - KEMPTVILLE

1963

Seeding: 30 lbs./acre in 36" rows Date of Seeding: June 13 Previous Crop: Corn Fertilizer: 300# 5-20-20 broadcast Harvested: September 16

Field Notes on height and growth: September 4

ł

2

D.M./ Green weight Height Name per acre D.M. acre Sept.4 Remarks (%) (tons) (tons) 5٩ Silage Funks Lindsey 92F 22.0 19.4 4.3 Promising Bushy - suggest 14" rows Silage Funks Lindsey 101F 413" 13.0 19.3 2.5 Silage Funks Lindsey 77F 61 Tall, not bushy, suggest 13.7 19.0 2.6 7" - 9" rows. Silage Funks Lindsey 551 31 10.4 19.5 2.0 Pollen stage. Silage Sorghum R.P. Mor-Su 18.3 26.0 4.8 71 Silage only. Silage Sorghum R.P. 30F 21.7 23.9 5.2 61 Shot blade (too late). Silage Sorghum Sidax SX11 18.3 23.4 4.3 616" Good. Sudan Grass 29.3 6۴ Seeds setting. 9.8 2.9 Grain Sorghum R10 (245) 4۴ Late pollinating. 11.9 25.6 3.0 Grain Sorghum NK (210) 26.4 3.7 41 Milk stage. 14.0 Grain Sorghum NK 135 416" Milk stage. 11.2 27.3 3.1 Grain Sorghum R12 (140) 13.2 22.3 2.9 313" Shot blade stage. Grain Sorghum NK (140) 12.0 26.6 3.2 316" Milk stage.

This species has been reported from time to time to have a high protein content. There is a need for high yielding species with high protein content for livestock feed. It was decided to harvest samples of the Russian Comfrey growing on Range E-5 to observe protein content and percent digestible dry matter (in vitro technique) at different stages of development.

A sample was not taken of the first vegetative growth. Four samples were taken at pre-flower, full flower, post-flower development stages and also of the aftermath from the pre-flower harvest. No yield data were obtained but percent dry matter at the various stages of development except for the pre-flower were determined. The percent dry matter was low in all harvests. This is noteworthy, particularly so for the post-flower stage, which appeared very mature and unpalatable.

The percent protein ranged from 21.1 percent for the pre-flower harvest and decreased to 15.2 for the postflower harvest. Apparently the species does have a relatively high protein content which is maintained fairly satisfactorily even in quite mature stages of development.

The percent digestible dry matter data are surprising when it is noted that D.D.M. is maintained at a high level (65%) even at the post-flower stage of development. This is contrary to any previous results obtained with grasses and legumes. Two estimates of percent D.D.M. were obtained to check the unexpected results. The D.D.M. of the aftermath growth was about 12% lower than that of the first growth.

Russian Comfrey warrants further study, particularly with regard to an explanation of the D.D.M. data.

Date of Cut	Street of C	~		% D.D.M.		% Protein
	Stage of Development	% D.M.	Run 1	Run 2	Mean	
June 11	Late bud	-	65 .3	64.3	64.8	21.1
June 21	Full flower	12.8	66.7	65.9	66.3	17.0
July 2	Dried flowers	13.6	65.4	65.4	65.4	15.2
July 22*	Vegetative	15.0	53.2	53.0	53.1	17.7

Summary of Russian Comfrey Data Obtained in 1963

* Regrowth from June 11 cut

DESCRIPTION OF NEW FORAGE VARIETIES

The following list notes the varieties licensed during 1963-64 and some of their characteristics. The experimental data from which they were recommended for licensing are available. The experimental data is located in the file labelled Plant Products (Arthur Dumais).

Bromegrass - "Redpatch"

Licence No. 911 Issued: Feb. 19, 1964

I

Origin: Developed by the Genetics and Plant Breeding Research Institute, Central Experimental Farm, Ottawa, Ontario.

Breeding Method Employed: This strain is a 21-clone synthetic. The original nursery material was obtained from seven standard varieties, seven clonal lines from Cornell University, and seven strains obtained from the Research Station, Saskatoon, Sask. Selections were made over a 4-year period from 3-foot spaced plants; O.P. seed was collected and the clones numbered and established in a clonal row nursery. One hundred and forty-two O.P. lines, and two standard varieties were set up in a 3replicated test. Two-year average yields were calculated, and the highest yielding 21 clones, used to collect O.P. seed, were used to set up a 21 clone polycross block. Polycross progeny tests were run on this material at Ottawa. Syn. 1 seed was used to conduct tests at different stations in eastern Canada, in comparison with other brome varieties.

<u>Characteristics:</u> This variety comes into head 3 to 4 days earlier than Saratoga but otherwise is similar in general characteristics. The characters of leafiness, aftermath recovery and disease resistance were selected for in the build-up of selected material. On some stations the aftermath is greater, and on others, less than Saratoga.

Timothy - "Astra"

Licence No. 893 Issued: Jan. 14, 1964

Origin: Developed by the Plant Breeding Institute, Weibullsholm, Landskrona, Sweden.

<u>Breeding Method</u>: This variety was developed by mass selection. To produce breeders' seed, large numbers of plants are started from breeders' seed produced previously. These plants are established in isolation. Undesirable plants are removed by roguing prior to anthesis and prior to seed harvest. Seed is harvested from the remaining plants and bulked to form breeders' seed.

<u>Characteristics</u>: The average yield of Astra for all tests conducted in Ontario is slightly below Climax under a hay plus aftermath pasture management. Only one test, seeded at Ottawa, has been subjected to a pasture management. In this test, Astra yielded as well as Climax. Differences in yield between Astra and Climax were not significant according to the statistical analyses at any location.

Astra has a slightly higher percentage of total leaf than Climax. When growing in the field, Astra does not exhibit as prominent a flag-leaf as does Climax. This criterion readily distinguishes this variety from Climax.

None of the stations have indicated any disease susceptibility or winterkilling on plots of Astra.

The growth pattern of Astra is similar to that of Climax and both varieties mature at the same time.

Name and Address of Producer: Weibullsholm Plant Breeding Institute, Landskrona, Sweden. Licence requested by Ontario Seed Cleaners and Dealers, Toronto.

Meadow Fescue - "Mimer"

Licence No. 865 Issued: Dec. 20, 1963

Origin: Developed by the Plant Breeding Institute, Weibullsholm, Landskrona, Sweden.

Breeding Method; Mimer was developed by mass selection and has been used in Sweden for a number of years. Breeder's seed has been produced generation after generation in isolation under natural conditions. It is considered to be in genetic equilibrium under these natural conditions.

Undesirable plants are rogued prior to anthesis. Seed of the remaining plants is bulked to form breeder's seed.

<u>Characteristics</u>: Mimer is higher in yield than either Ensign or Common meadow fescue. Data from Guelph indicates that it is not as leafy as Common, but is almost as high in per cent protein.

Mimer is similar to Ensign and Common in its growth pattern, and is similar to Ensign in maturity. It is more resistant to leaf rust (Puccinia graminis) than Ensign.

The licensing of this variety is supported by the Forage Crop Sub-Committee of the Ontario Committee on Field Crop Recommendations.

Meadow Fescue - "Trader"

Licence No. 905 Issued: Jan. 31, 1964.

Origin: Genetics and Plant Breeding Research Institute, Research Branch, Canada Department of Agriculture, Ottawa.

Breeding Method: A synthetic variety developed from 15 progeny-tested clones. The source material was varieties and strains of European origin.

<u>Characteristics</u>: Trader is a leafy type somewhat later in maturing than Common and Ensign. It recovers well after defoliation and appears to form a better basal growth than Ensign in pastures.

Both hay and pasture yield data indicate that Trader is equal to other varieties in yield and is consistently higher yielding than Ensign, the only pedigreed meadow fescue in commercial production in Canada.

Limited seed yield data at Ottawa do not show significant differences between Trader and Ensign.

The components of this variety were selected for resistance to leaf rust (<u>Puccinea</u> <u>coronata</u>). Limited data indicate a marked superiority to Ensign and Common in this regard.

The licensing of this variety was recommended by:

Genetics and Plant Breeding Research Institute Department of Agriculture, Ottawa, Ontario.

and

The Ontario Field Crops Recommendation Committee, Ontario Agricultural College, Guelph, Ontario.

Red Clover - "Lakeland"

Licence No. 899 Issued: Jan. 23, 1964

Origin: Lakeland was developed by the Wisconsin Agricultural Experiment Station in co-operation with the Crops Research Division, ARS, U.S.D.A. It was named in 1959 and released to the National Foundation Seed Project for Foundation seed production and allocation in the same year. Certified seed production started in 1961.

<u>Pedigree and Breeding History</u>: Lakeland was developed by recurrent mass selection with artificial inoculations of the fungi causing northern anthracnose and powdery mildew during the late 1940's and the 1950's. Source varieties used in development were Wisconsin Mildew Resistant, Dollard, and Kenland with some contributions from Albert, Cumberland, Ottawa, Redon, and Scott.

Varietal Description: Lakeland is a high yielding, double cut type of red clover. It persists well and is equal to Ottawa and Dollard. It is highly resistant to northern anthracnose and powdery mildew, which favors higher quality hay than many other varieties. All other Canadian grown varieties are highly susceptible. Maturity in respect to bloom date is similar to Dollard. Like other very hardy types, Lakeland exhibits more fall growth dormancy than less hardy types. In seed producing ability, it has proved to be one of the top varieties in all tests.

Lakeland appears to be best adapted to the humid area latitude belt from 41 to 49° North extending eastward from North Dakota and Hebraska in the United States and Canada.

Licence requested by Rudy-Patrick Seed Co., Kansas City, Mo.

Sorghum - "R.P. Mor-Su"

Licence No. 912 Issued: Feb. 24, 1964

Origin: Original cross made and tested at Rudy-Patrick Research Center, R. R. #3, Ames, Iowa.

<u>Pedigree</u>: It is a three-way cross between an F_1 male sterile, sweet stalked sorgo hybrid x a sudan grass selection. The parents of the sorgo hybrid are a white-seeded Kafir male sterile selection crossed with a high sugar selection from Waconia Orange sorgo. The sudan grass male in the crossing block is a derivative of Piper sudan grass.

Hybrid Description and Traits: R.P. Mor-Su is a hybrid sorgo male sterile x sudan grass cross. It is characterized by vigorous seed germination and early growth, even under cool soil and climatic conditions. R.P. Mor-Su is rapid in growth and recovers very well following cutting at heights above 4 to 5 inches. It is high in yielding ability for green chop and wilted haylage usage. It also has performed well for grazing and silage. It is best adapted to the northern parts of the United States and southern Ontario in Canada.

In <u>maturity</u>, R.P. Mor-Su is intermediate between Piper sudan grass and Sudax. It heads and blooms a week to two weeks later than Piper and a few days earlier than Sudax. It is one of the earliest sorghum-sudan grass hybrids on the market.

<u>Height</u> - R.P. Mor-Su is a tall growing hybrid; at maturity it averages 5 to 10 inches taller than Sudax and one or two or more feet taller than Piper, depending on the location.

<u>Disease Resistance</u> - High level of resistance to sorghum leaf diseases. Is quite resistant to Helminthosporium leaf blight compared with Piper which is highly susceptible. R.P. Mor-Su shows little or no damage under rust epiphytotics also.

<u>Prussic Acid Potential</u> - R.P. Mor-Su probably should be considered as medium in HCN content compared with Piper which is low and Sorghum almum which is high. It has been similar to Sweet Sudan grass and lower than Sudax in several measurements of this trait.

<u>Seed Stock</u> - Planting seed of Mor-Su is reddish-brown in color, and the glumes are absent.

FORAGE CROP PUBLICATIONS AND PAPERS PRESENTED

May 1, 1962, to April 30, 1964

- Christie, B.R. Performance of common orchardgrass. Forage Notes Vol. 9, No. 1, pp. 56-58, Spring 1963.
- Christie, B.R. Male-sterility in grasses. Forage Notes, Vol. 9, No. 2, pp. 50. Fall 1963.
- Department of Crop Science. 1963 Crop Notes for Extension, Promotion and Sales Programs. Dept. of Crop Sci. Mimeo 121/01, Y63. September 1963.
- Department of Crop Science. High dry matter silage or haylage. Dept. of Crop Sci. mimeo 120/52.1 Y62, 4 pp. June 1962.
- Department of Crop Science. 1962 Crop Notes for Extension, Promotion and Sales Programs. Dept. of Crop Sci. mimeo, 30 pp. - September 1962. (With Kemptville Agricultural School and Western O_ntario Agricultural School)
- Jones, G.E. Relative merits of growing cereal crops or forages for milk and/or beef production in the East Central Region. Can. Soc. Agron. Proc. 1962, pp. 43-46, 1962.
- Jones, G.E. Use of herbicides in the establishment of forage seedlings. Forage Notes 8: No. 3, 16-19, Fall 1962.
- Ontario Forage Crops Committee. 1962 progress report on farm plantings of forage crops. Department of Crop Sci. mimeo, 15 pp. Oct. 1962. (Dept. of Crop Sci,, with K.A.S., W.O.A.S., and Soils and Crops Branch of the O.D.A.)
- Ontario Committee on Field Crop Recommendations (W.E. Tossell, Chairman). 1964 Field Crop Recommendations for Ontario. Ont. Dept. of Agric. Publ. 296 (revised), January 1964.
- Tossell, W.E. Ontario's field crop research program. Proc. Ont. Soil and Crop Improvement Assoc. 1963 convention, pp. 81-85, January 1963.
- Tossell, W.E. What the forage seed consumption area of Canada looks for in seed. Can. Seed Growers' Assoc. Proc. pp. 19-24. June 1962.
- Tossell, W.E. The future of forages in Ontario. Ont. Soil and Crop Improvement Assoc., Toronto, January 1964.
- Tossell, W.E. The variety picture. Ont. Soil and Crop Improvement Assoc., Toronto, January 1964.
- Young, W.S. Field crop recommendations for 1963. Proc. Ont. Soil and Crop I_provement Assoc. 1963 convention, pp. 76-81, January 1963.
- Young, W.S. Haylage...a future in Ontario? Good Farming Quarterly, Spring 1963.

Young, W.S. Haylage...a future in Ontario? The Furrow (John Deere), April 1963.

- Young, W.S. Can you help your alfalfa produce longer? Information Branch to Seed Fair Issues.
- Young, W.S. Why the trend to haylage? O.S.C.I.A. Proc., January 1964.