

OBPC Annual General Meeting

March 19, 2024

Sowthini Vijayakumar*, Naresh Thevathasan, Paul Voroney, John Lauzon, Kimberley Schneider, Amir Bazrgar, Bill Deen, Mahendra Thimmanagari *Sowthini@uoguelph.ca

Ministry of Agriculture, Food and Rural Affairs

Long-term Research....

quantify SOC rate of increase in biomass fields
 2016 SOC data: - base line data (Graham at al., 2018)

2020 - sampled in 32 different fields (11 different sites) including,

- Switchgrass 11 Miscanthus – 09 Agriculture- 06 Woodlot – 06
- quantify SOC and N in different soil aggregate fractions dry sieving method
- assess carbon contribution from the C4 biomass crop to the soil
 - $\delta 13C$ isotope analysis
 - baseline data (2016) 3 sites
 - contribution after 4 years (2020)

3 study sites:

a) Elora Research Station (ERS): (2008-2019)
b) Guelph Turfgrass Institute (GTI): (2009-2020)
c) Burlington Mabel May Farm: (2016-2020)

land was under agriculture crop production with annual crop rotation (used as a reference field).

Corn (*Zea may*s) C₄crop

SoybeanWhe(Glycine max)aes C_3 crop C_3 c

Wheat (*Triticum aestivum*) C₃ crop

PBC establishment on a certain portion of the land

Miscanthus (*Miscanthus spp*.) C₄ crop

Results

Total soil organic carbon in SG, Mis and Ag fields in Elora, Guelph and Burlington,

Locations	SOC Stock Gain (Mg C ha ⁻¹)			Years of Crop Cultivation (y)	Mean Annual SOC Sequestration Rate (Mg C ha ⁻¹ y ⁻¹)			Sequestered CO ₂ Equivalent (Mg CO ₂ ha ⁻¹)			Potential SOC Stock Gain (Mg C ha ⁻¹)			Potential CO ₂ Sequestration (Mg CO ₂ ha ⁻¹)		
	Ag	SG	Mis	Ag/SG/Mis	Ag	SG	Mis	Ag	SG	Mis	Ag	SG	Mis	Ag	SG	Mis
Elora	7.4	18.7	22.4	11	0.67	1.70	2.04	27.6	68.6	82.2	80.3	69.	65.	294	253	239
												0	3	.7	.2	.7
Guelph	25.	29.2	28.6	11	2.32	2.65	2.6	93.6	107.	105.	69.5	65.	66.	255	241	244
	5								2	0		9	5	.1	.9	.1
Burlington	1.7	3.4	10.6	4	0.46	0.85	2.65	6.2	12.5	39.0	34.0	32.	25.	124	118	92.
												3	1	.8	.5	1

Objective

to estimate the contribution of C₄ derived SOC in the fields of switchgrass (SG), miscanthus (Mis) and agricultural crop (annual crop rotation) (Ag)

¹³C natural abundance technique:

- concentration of a stable isotope as it occurs in nature
 - ¹²C and ¹³C : two most abundant stable isotopes of C
- utilize the difference in ^{13}C values ($\delta^{13}\text{C}$) of C_3 and C_4 plants to identify the
 - source, pools and fate of organic C in soils
- C₃ or C₄ vegetation contain SOM with δ^{13} C of -27‰ or -13‰, respectively
- + $\delta^{\rm l3}C$ values allow either group of plants to act as a tracer

Sample collection

•

C_4 crop's contribution (C_4 derived SOC) to total SOC

 δ 13C (‰) signatures, total soil organic carbon (SOC) stocks and calculated contribution of C₄ derived SOC to the total SOC in Guelph, Elora and Burlington, Ontario in 2019/2020.

Location	Land-use	Establishment	δ ¹³ Csoc	Total SOC	C ₄ derived SOC	C ₄ derived SOC	C ₃ derived SOC	
		(year)	(‰)	(Mg C ha ⁻¹)	(Mg C ha ⁻¹)	(%)	(Mg C ha ⁻¹)	
Guelph	Ag	N/A	-24.21	84.8 (± 2.47)	15.9 (± 0.35)b	19	68.9 (± 0.35)	
Guelph	Mis	2009	-22.58	87.9 (± 6.43)	26.9 (± 0.16)a	31	61.0 (± 0.16)	
Guelph	SG	2009	-22.70	88.5 (± 5.72)	26.4 (± 0.08)a	30	62.1 (± 0.08)	
Elora	Ag	N/A	-23.05	85.0 (± 1.80)	22.7 (± 0.04)z	27	62.3 (± 0.04)	
Elora	Mis	2008	-19.83	100.0 (± 1.48)	49.8 (± 0.23)x	50	$50.2 (\pm 0.23)$	
Elora	SG	2008	-21.08	96.3 (± 3.44)	39.6 (± 0.10)y	41	56.7 (± 0.10)	
Burlington	Ag	N/A	-24.53	85.8 (± 0.65)	$14.2 \ (\pm 0.07)s$	17	$71.6 \ (\pm \ 0.07)$	
Burlington	Mis	2016	-25.30	94.7 (± 4.86)	11.0 (± 0.09)t	12	$83.7 (\pm 0.09)$	
Burlington	SG	2016	-25.59	87.5 (± 5.04)	8.4 (± 0.15)u	10	79.1 (± 0.15)	

 C_4 derived SOC:

Mis > SG > Ag in Elora and Guelph (11 years)

Ag > Mis > SG in Burlington (4 years)

C₄ derived SOC stock contribution from biomass crops in 4 years of cultivation to total SOC stock in Guelph, Ontario.

Converting low productive Ag land to PBC - > increases SOC -> best management practice and a tool for climate change mitigation

Please visit the following link for all publications, videos and factsheets:

https://onforagenetwork.ca/ontario-biomass-producers-co-operative-inc/resources-from-nareshthevathasan/

Thank you!

Ministry of Agriculture, Food and Rural Affairs

